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Abstract

Previous work suggests that aggregate probabilistic forecasts on a binary event are

often conservative. Extremizing transformations that adjust the aggregate forecast

away from the uninformed prior of 0.5 can improve calibration in many settings. How-

ever, such transformations may be problematic in decision problems where forecasters

share a biased prior. In these problems, extremizing transformations can introduce

further miscalibration. We develop a two-step algorithm where we first estimate the

prior using each forecasters’ belief about the average forecast of others. We then trans-

form away from this estimated prior in each forecasting problem. Our algorithm works

in single-question forecasting problems and does not require past data. Evidence from

experimental prediction tasks suggest that the resulting average probability forecast is

robust to biased priors and improves calibration.

Keywords— judgment aggregation, wisdom of crowds, forecasting, extremization, recalibra-

tion, meta-beliefs
∗We thank the audiences at 2022 INFORMS Annual Meeting and European Decision Sciences Seminar

for helpful comments. Cem Peker gratefully acknowledges financial support from the NYUAD Center for Be-
havioral Institutional Design (C-BID) under the NYUAD Research Institute Award CG005. Tom Wilkening
gratefully acknowledges financial support from the Australian Research Council (Future Fellowship Research
Grant, FT190100630).

†E-mail addresses: cem.peker@nyu.edu (C. Peker), tom.wilkening@unimelb.edu.au (T. Wilkening).

1

mailto:cem.peker@nyu.edu
mailto:tom.wilkening@unimelb.edu.au


1 Introduction1

Problems of practical decision-making often require probabilistic forecasts of uncertain2

events. Knowledge regarding the true likelihood of the event is often scattered across multiple3

individuals leading to an information aggregation problem where individual forecasts must be4

combined into a single forecast. Constructing the best aggregation method is difficult because5

forecasters may make errors when updating their information, may differ in expertise, and6

may vary in the overlap of the information they have available.7

In data-rich environments, it is often possible to use information from training data8

or other forecasts to better understand the structure of information that exists amongst9

forecasters. In ideal settings, training data from past forecasts of known outcomes can be10

used to empirically estimate the diversity of information across individuals and aggregate11

unknown events accordingly (Atanasov et al., 2017; Breiman, 1996; Dana et al., 2019; Raftery12

et al., 1997; Satopää, Baron, et al., 2014; Satopää, Jensen, et al., 2014). Alternatively, in13

cases where forecasters are answering many questions, it may be possible to use answers14

from many questions to estimate features of the data-generating process that are useful to15

improving aggregation (Lichtendahl Jr et al., 2022; Satopää et al., 2017).16

Unfortunately, decision-makers may not always have access to data that is relevant to17

the questions of importance. For example, the performance of forecasters on problems with18

known outcomes may not be relevant to the unknown problem of interest, and collecting19

relevant data on similar problems may be impractical (Clemen, 1989; Genre et al., 2013).20

The challenge in these “single-question” forecasting problems is to make the best forecast21

possible with data related only to the question being asked. We concentrate on the single-22

question problems for the rest of the paper.23

The simple average is a common method to aggregate probability forecasts in the single-24

question domain (Winkler et al., 2019). Combining independent judgments from many25

forecasters can lead many individual-specific errors to cancel out leading to improved fore-26

casts via the “wisdom of crowds” effect (Larrick & Soll, 2006; Surowiecki, 2005). However,27
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previous work suggests that the average probability forecast has a major shortcoming: ag-28

gregated forecasts tend to be too conservative with the probability of unlikely events being29

over-predicted and the probability of near-certain events being under-predicted (Ariely et al.,30

2000; Turner et al., 2014). This aggregate conservatism naturally arises in settings where31

information is scattered and forecasters have access to different sets of information (Baron32

et al., 2014). It also arises even when individual forecasts are well-calibrated since the linear33

combination of probability forecasts is always theoretically miscalibrated and lacks sharpness34

(Ranjan & Gneiting, 2010).35

One way to address the conservative bias is to recalibrate aggregate forecasts using an

extremization function. Consider the linear log odds (LLO) transformation

t(p) =
δpγ

δpγ + (1− p)γ
, (1)

where p and t(p) are the original and transformed probabilities, and {δ, γ} are parameters.136

Extremizing transformations of the LLO form typically improve the accuracy of aggregate37

probabilistic forecasts (Atanasov et al., 2017; Budescu et al., 1997; Han & Budescu, 2022).38

However, a second potential issue arises in cases where the prior is biased. In many “wicked”39

forecasting problems, majority is wrong (Prelec et al., 2017; Wilkening et al., 2022) and/or40

inaccurate forecasters express higher confidence (Hertwig, 2012; Koriat, 2008, 2012; Lee &41

Lee, 2017). In these cases, average forecast often falls on the wrong side of 0.5. Extremizing42

wrong-sided average forecasts using the LLO transformation has the potential of pushing43

the forecast away from the true probability and can increase miscalibration rather than44

improving accuracy.45

1The LLO transformation follows from a linear log-odds model

log

(
t(p)

1− t(p)

)
= γlog

(
p

1− p

)
+ τ, (2)

where γ is the slope and τ = log(δ) gives the intercept (Turner et al., 2014). A simplified implementation sets
δ = 1 (Erev et al., 1994; Karmarkar, 1978; Shlomi & Wallsten, 2010), which is shown to improve calibration
of the aggregate probability in forecasting geopolitical events (Mellers et al., 2014).
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In this paper, we ask whether it is possible to estimate the prior in a single-question46

framework and to use this as the starting point for recalibration. Our main contribution is47

to show that the common prior can be estimated in the single-question domain by eliciting48

forecasts and meta-predictions about the forecasts of others. We demonstrate how this49

information can be used to improve recalibration over standard single-question recalibration50

methods, and discuss its performance relative to other single-question algorithms that have51

recently been developed.52

We consider an environment in which individuals share a common prior that an event53

may occur, which may be biased.2 Forecasters receive independent signals conditional on the54

actual state, leading to an average probability forecast that puts a higher probability on the55

actual state than the prior. When the prior that the event occurs is 0.5, the average forecast56

in these problems always falls on the correct side of 0.5 as the overall crowd size grows large,57

but the resulting forecast is always conservative. Thus, in these cases, extremization away58

from 0.5 can improve calibration. However, in a biased decision problem, wrong-sidedness59

can occur. For example, if the prior is 0.7, there exists cases where the posterior is below 0.760

but above 0.5. In these cases, the LLO transformation would extremize the average forecast61

towards 1, even though the information contained in forecaster’s private signals suggest a62

lower probability than the prior.63

To address this issue, we elicit each forecaster’s estimate on the average forecast of others64

(referred to as their meta-prediction) as well as their probabilistic forecast. We show that65

these two measures can be combined to estimate the prior in our setting, and then implement66

an LLO transformation that recalibrates away from the estimated prior rather than using a67

neutral prior of 0.5.68

To evaluate how well our robust recalibration algorithm calibrates, we estimate calibra-69

tion curves across a variety of decision problems related to general knowledge, sports, and70

2We are agnostic as to where this bias might come from, but the setup is consistent with one where
all forecasters initially observe the same common-signal and then receive a private idiosyncratic one. The
common signal leads to the initial prior that differs from 0.5.
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the price of art works. For recalibration parameters in the range of those suggested in Baron71

et al. (2014), we find that our algorithm generally improves calibration relative to a variety72

of alternative algorithms that have been explored in the literature. These include the min-73

imal pivoting algorithm (Palley & Soll, 2019), the knowledge weighting mechanism (Palley74

& Satopää, 2023), the meta probability weighting algorithm (Martinie et al., 2020), and75

the surprising overshoot (SO) algorithm (Peker, 2023). Robust recalibration also generates76

very low brier scores across decision problems, suggesting that it has very good accuracy77

characteristics overall.78

The rest of this paper is organized as follows: Section 2 reviews the recalibration literature79

and summarizes the other single-question algorithms that we compare our algorithm with.80

Section 3 introduces the Bayesian framework. Sections 4 discusses the existence of wrong-side81

average forecasts in biased decision problems and develops the robust recalibration method82

that utilizes meta-predictions. Section 5 provides empirical evidence from experimental83

prediction tasks. Section 6 provides an overview of our contribution and concludes.84

2 Related Literature85

Recalibration approaches that seek to account for the partial overlap in shared informa-86

tion amongst forecasters have been shown in a variety of settings to improve outcomes over87

techniques that allow only for a weighted average of individual predictions (Baron et al.,88

2014; Turner et al., 2014). Recalibration typically involves the use of an extremization func-89

tion, which adjusts forecasts toward extreme outcomes. The most popular choices are logit90

and probit transformations (Baron et al., 2014; Satopää, Baron, et al., 2014; Satopää et al.,91

2016; Turner et al., 2014).92

Recalibration functions are typically symmetric around 0.5. However, as noted in Turner93

et al. (2014), it is possible and often beneficial to allow for more flexible calibration ap-94

proaches by extremizing from a different initial prior. A challenge in improving calibration95
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is therefore to incorporate information about the prior into the aggregation algorithm (Di-96

etrich, 2010; Satopää, 2022). This has been accomplished in multiple-question forecasting97

environments by using a Bayesian framework and multiple predictions within the same sur-98

vey to estimate a non-uniform prior across a range of prediction tasks (Lichtendahl Jr et al.,99

2022; Satopää et al., 2017).3100

Our approach within the recalibration literature is similar to Lichtendahl Jr et al. (2022),101

which also stress the importance of using a value other than 0.5 as the basis for extremiza-102

tion. In their paper, the authors explore data-generating processes in which experts observe103

multiple independent and identically distributed signals from a joint distribution along with104

multiple commonly observed private signals. The authors show that with multiple forecasts105

and historical data, it is possible to develop estimation procedures that are well calibrated106

and which “antiextremizes” the average in a large number of cases.107

We see the empirical approach taken in Lichtendahl Jr et al. (2022) as being highly108

useful in environments where there is substantial historical data to estimate base rates and109

some confidence in the error structures generated from the data generating process. Our110

approach, which estimates the prior from meta-predictions and predictions alone, is likely to111

be more valuable in environments where forecasters have limited historical data and where112

there is significant uncertainly about the underlying data generating process. We note the113

two approaches are not mutually exclusive: it is an open and interesting question of how to114

best combine the two approaches when historical data, training data, and meta-prediction115

data are available.116

Our paper also contributes to the emerging literature on forecast aggregation methods117

that rely on higher order beliefs (Chen et al., 2021; Martinie et al., 2020; Palley & Satopää,118

2023; Palley & Soll, 2019; Peker, 2023; Prelec et al., 2017; Wilkening et al., 2022). The119

elicitation of higher-order beliefs allows the researcher additional information about the120

3In settings where forecasters have heterogeneous preferences over the extent to which their forecast
conforms or contrasts to the reports of others, it may also possible to estimate the prior using only choice
data. See Jia et al. (2024) for an approach to improving forecasts in this alternative setting.
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signals that individuals receive. Such information can be useful in cases where signals are121

either correlated or noisy, and where forecasters themselves have more information about122

the data-generating process than the aggregator.123

Meta-prediction algorithms have been developed both for binary classification problems124

(e.g., Chen et al., 2021; Prelec et al., 2017; Wilkening et al., 2022) and in settings like125

ours where the aggregator wishes to make a probabilistic forecast. In this second class of126

problems, four main alternative approaches have been proposed: meta-probability weighting,127

minimal pivoting, knowledge weighting, and the surprising overshoot (SO) algorithm. Meta-128

probability weighting aims to use forecasters’ meta-prediction as well as their prediction129

to deal with biased priors or shared information. Forecasters whose prediction and meta-130

prediction diverge receive higher weights in the subsequent weighted average of predictions131

(Martinie et al., 2020). Minimal pivoting adjusts the average predictions based on how much132

it differs from the average meta-prediction (Palley & Soll, 2019). The adjustment corrects for133

the shared-information bias in the aggregate resulting from forecasters’ common information.134

Knowledge-weighting proposes a weighted aggregation that seeks to overweight forecasters135

who are better at predicting the forecasters of their peers (Palley & Satopää, 2023). Finally,136

the surprising overshoot algorithm corrects for shared information using the observation that137

the prediction and meta-prediction of an individual should both fall on the same side of a138

well-calibrated average (Peker, 2023).139

Our formal framework is similar to Wilkening et al. (2022) and Martinie et al. (2020) in140

that individuals receive private noisy signals but share a common biased prior. This frame-141

work naturally introduces conservative forecasts since all individuals have only imperfect142

information about the true state. Palley and Soll (2019), Palley and Satopää (2023) and143

Peker (2023) use an alternative framework that allows for intermediate types of shared infor-144

mation, but places stronger restrictions on the types of signals received. The framework used145

in knowledge weighting lies between the two approaches and considers an environment where146

forecasters make noisy predictions and meta-predictions based on their true information.147
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Although it is not emphasized in the previous literature, the framework used in Palley148

and Soll (2019) is one in which the meta-prediction and prediction correspondences are linear149

and where the intersection of these lines corresponds to the common prior that exists after150

accounting for publicly observable information. As a result, the ordering of the prediction151

and meta-prediction correspondences switch at the uninformative prior. An implication of152

this is that the minimum pivoting mechanism—which uses the difference in the average pre-153

diction and meta-prediction to adjust forecasts—is fundamentally an extremizing procedure154

that adjusts forecasts away from the common prior. As seen in the results section, our algo-155

rithm with the suggested extremizing parameters of Baron et al. (2014) is more aggressive156

than the adjustment made in the pivot mechanism and performs better. Thus, at least in157

the data sets considered, our results suggest that the minimum pivot mechanism is too con-158

servative. This finding is similar to the contemporaneous work presented in Rilling (2024)159

that explores a neutral pivoting mechanism that is more aggressive than the original minimal160

pivot mechanism.161

Our recalibration procedure relies on a regression approach that is similar to the fit-162

ting technique used in Palley and Satopää (2023) that seeks to estimate a meta-prediction163

function using reported predictions and meta-predictions. Regression approaches have also164

been proposed by Libgober (2023) to identify information regarding the underlying data-165

generating process.166

3 Framework167

Our framework is similar to Wilkening et al. (2022) but adapted to the forecasting do-168

main. We are interested in predicting the probability that a binary even E will occur. The169

probability that this event occurs varies with a state that is unobservable to the decision170

maker. However, forecasters receive signals regarding the underlying state and have common171

knowledge regarding the likelihood of each potential signal in each potential state.172
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We consider a setting where there are two potential underlying states. Let ω ∈ {ωG, ωB}173

be the state of the world where G and B represent “Good” and “Bad” states respectively.174

Event E occurs with probability Pr(E|ωG) = g in the good state and with probability175

Pr(E|ωB) = b in the bad state, satisfying g > b. Nature determines the state with unknown176

probability Pr(ω = ωG). Thus, a probability forecast g of E when the state is good and b177

when the state is bad would be a perfectly well-calibrated forecast.178

An aggregator elicits and aggregates judgments from a crowd of N forecasters. Forecast-179

ers share a common prior that the state is good, q, resulting in a common prior belief that180

the event E will occur with probability Pr(E|q) = qg+ (1− q)b.4 Each forecaster k receives181

a signal σk from S ≡ {s1, . . . , sm} ∪ {s∅} regarding the underlying state. Without loss of182

generality, signals are normalized so that si := p(ωG|si), where p(ωG|si) is forecaster k’s pos-183

terior belief on the probability of the true state being ωG when σk = si. The uninformative184

signal satisfies s∅ := q and the signal space is bounded in [0, 1].185

Let p(si|ω) denote the probability of a signal si in state ω, satisfying
∑
si∈S

p(si|ω) = 1 for186

each ω ∈ {ωG, ωB}. The conditional distribution of signals is represented by a likelihood187

matrix [Qωj]2×(m+1). The first and second rows give the likelihoods of each signal in states ωG188

and ωB respectively. Thus, QωGi = Q1i ≡ p(si|ωG). We will assume there exists at least one189

signal sl ∈ {s1, . . . , sm}, where Qωi ∈ (0, 1), which implies that at least one signal provides190

noisy information about the underlying state.5 Consistent with our naming convention of191

states, we also assume E[σk|ωG] > s∅ > E[σk|ωB], which implies that signals are informative192

and the expected posterior belief is higher in the good state than the bad state.193

It is useful at this point to note a distinction that we are making regarding events and194

states. In our framework, the values b and g represent the best prediction that could be made195

by an aggregator in the corresponding state if he knew the structure of the information service196

4As can be seen here, there is a one-to-one correspondence between the prior q on ωG and the prior
qg + (1− q)b on the event E. A similar one-to-one correspondence exists between posteriors on ωG and E.
We will use the words prior and posterior to refer to beliefs over both states and events and will differentiate
between them if there is potential ambiguity.

5This assumption implies that the signal distribution is non-degenerate in either state since
∑

j Qωj = 1.
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and observed an infinite number of draws from it. In some settings, such as asking about197

the answer to an objective true/false knowledge question, signals may be fully revealing and198

we could set g and b to 1 and 0 respectively. However, in other settings, such as predicting199

whether someone will be convicted of a crime, some aspects of the problem (e.g., the detailed200

knowledge of the jurists) may be unobservable. In these cases g and b represent the best201

possible predictions that could be made about the event based on all possible information202

available.203

Given a signal si such that p(si|ωG) + p(si|ωB) > 0, the posterior belief that the state is

ωG is given by

p(ωG|si) =
p(ωG)p(si|ωG)

p(ωG)p(si|ωG) + p(ωB)p(si|ωB)
= si.

Given p(ωG|σk) = σk for a forecaster with signal σk, posterior belief on the occurrence of204

event E is given by Pr(E|σk) = σkg + (1− σk)b.205

The signal densities {QGi, QBi}, prior q, and state-conditional event probabilities {g, b}206

are common knowledge to the forecasters but unknown to the aggregator. Each forecaster k207

is asked to report i) a prediction Pk on the probability of event E and ii) a meta-prediction208

Mk on the average of others’ predictions. Since the likelihood of E depends on the state, a209

forecaster’s probability prediction is dependent on the forecaster’s signal. We will assume210

that all forecasters report their best estimate for prediction and meta-prediction, and it is211

common knowledge that they do so. Let P (σk) denote the prediction function of event E,212

where213

P (σk) = σk g + (1− σk) b. (3)

Further, let Pi be the prediction of forecaster i and let P̄−k = 1
N−1

∑
i ̸=k

Pi be the average214

prediction made by the other N − 1 forecasters. Forecaster k’s meta-prediction is given by215

Mk = E[P̄−k|σk].216

For a given outcome state ω, the expected prediction made by a randomly selected other
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forecaster is given by

E[P |ω] ≡
∑
si∈S

p(si|ω)[gsi + b(1− si)].

Noting that we have assumed that signals are independent once we have conditioned on the217

state, E[P̄−k|ω] = E[P |ω] for all k. Thus, the meta-prediction function, denoted by M(σk),218

can be written as219

M(σk) = σkE[P |ωG] + (1− σk)E[P |ωB]. (4)

Figure 1 plots P (σk) and M(σk) in the space of predictions and signals. We note three220

general properties that are the basis for our recalibration algorithm. First, both functions221

increase linearly in σk with the prediction line being more steep than the meta-prediction222

line. Note that P (σk) ∈ [b, g] and M(σk) ∈ [E[P |ωB],E[P |ωG]]. We also have E[P |ωB] > b223

and E[P |ωG] < g, i.e. the average prediction will be too conservative in our setting in both224

states. To illustrate, consider the case ω = ωG where the true probability of the event is225

g. Then, a forecaster k has a perfectly calibrated prediction P (σk) = g only if σk = 1226

and predictions are conservative for all σk < 1. Recall that at least one noisy signal about227

the state occurs with strictly positive probability by assumption. Thus, in a large enough228

sample, there will always exist forecasters with σk < 1, leading to an average prediction lower229

than g. Furthermore, it is common knowledge that forecasters with σk < 1 exist. Forecasters230

with σk = 1 expect average prediction to be more conservative than their own prediction,231

implying M(σk) < P (σk) = g for σk = 1. A similar reasoning holds for ω = ωB, resulting in232

conservatism in average prediction and a relatively more steep prediction line.233

Second, the prediction and meta-prediction lines cross exactly once. Figure 1 illustrates234

this result. Both functions are monotonically increasing, linear in σk, and the range of235

meta-predictions is a subset of predictions, resulting in a unique crossing point. Lemma 1236

shows that this crossing point occurs at the uninformative prior. All proofs are included in237

Appendix A.238

Lemma 1. M(s∅) = P (s∅), i.e. a forecaster k’s meta-prediction is equal to her prediction239
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Figure 1: Prediction and meta-prediction functions for a case of s∅ > 0.5. Note that, in
this example, the average forecast is higher than 0.5 in both the good and the bad state.
Section 4 will explore a potential pitfall in recalibrating such forecasts.

at the prior.240

Finally, since both lines are linear, it is possible to identify P (s∅) when there are at least

two forecasters with different signals using the crossing point property and a projection. To

see this, note that it is possible to rewrite the prediction function as:

σk =
P (σk)− b

g − b
.

Substituting this in Equation 4 yields241

M(σk) = α(Q, q, g, b) + β(Q, q, g, b)P (σk), (5)

where α(Q, q, g, b) :=
gE[P |ωB]− bE[P |ωG]

g − b
and β(Q, q, g, b) :=

E[P |ωG]− E[P |ωB]

g − b
are con-242
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stants that do not vary with σk. Using any two forecasts and meta-predictions that differ,243

the terms α(Q, q, g, b) and β(Q, q, g, b) can be solved. Prior prediction P (s∅) can then be244

identified by finding the point where M(s∅) = P (s∅).245

Before turning to our recalibration strategy, we note that our model presents an ideal246

environment in which all forecasters perfectly map their signals to predictions and meta-247

predictions and there are exactly two states. Previous work suggests that the crossing point248

property between the meta-prediction and prediction correspondence is reasonably robust to249

systematic individual-level miscalibrations. Wilkening et al. (2022) show that the crossing250

property holds in decision problems where probability forecasts are miscalibrated as long251

as miscalibrated forecasts are common knowledge. Chen et al. (2021) show that the same252

property continues to hold in decision problems where signals are correlated.6 Nonetheless,253

it is likely that there is idiosyncratic noise, particularly in the report of meta-predictions.254

As seen below, we use regression approaches to estimate the prediction and meta-prediction255

correspondences in order to help reduce the impact of such noise.256

In Appendix B, we extend the theoretical discussion and provide two examples that show257

that the properties of the algorithm are not guaranteed when there are more than two states.258

The first example shows that the prediction and meta-prediction lines may cross multiple259

times when we expand the state space and that the estimated prior may not be correct.260

Nonetheless, the example demonstrates that the algorithm may still function well as long as261

the estimated prior still identifies the correct direction for extremization.262

The second example identifies a situation where our algorithm fails to extremize in the263

correct direction for one of the states. The counter-example highlights a case where signals264

are very informative about the signals of others but only weakly informative about the265

underlying likelihood of the event. We see such situations as being quite rare: it requires266

6Both of these papers explore prediction algorithms that try to correctly predict the correct state rather
than make a probabilistic forecast. Wilkening et al. (2022) use the ordering of the average prediction and
average meta-prediction to the left and the right of the prior to make predictions. Chen et al. (2021) predict
E[P̄ |ω] in each state using the relationship between predictions and meta predictions and selects the state
where the average prediction is closest to the predicted average.
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a very specific signal structure where the event of interest is only weakly connected to the267

signals. Nonetheless, the possibility of such cases warrants a careful empirical exploration of268

the algorithm to assess its applicability in real-world settings.269

3.1 A special case with b = 0 and g = 1270

In the empirical section below, we study true-false questions where there is an objectively271

correct answer. In these questions, it is possible that a very well-informed forecaster could272

know the state with certainty. Thus, these types of questions might be seen as a special case273

of our model where b = 0 and g = 1. In this special case, the prediction correspondence274

is P (σk) = σk, and the meta-prediction correspondence is as given by Equation 4 where275

E[P |ω] ≡
∑
si∈S

p(si|ω)si for ω ∈ {ωG, ωB}. The prediction line is predicted to travel along276

the 45 degree line in the space of signals and predictions. Thus, the prior corresponds to the277

point where the meta-prediction correspondence crosses the 45-degree line.278

In our empirical analyses, we do not directly impose that the prediction line is equal279

to the 45-degree line since testing this relationship would require information related to280

signals that are unobservable in empirical data. Instead, we estimate the two parameters in281

Equation 5 using linear regressions. We then use these estimates to predict the point where282

M(s∅) = P (s∅). This approach is valid for any 0 ≤ b < g ≤ 1 and therefore nests the special283

case where b = 0 and g = 1.284

The second step of our algorithm involves extremizing the data away from this estimated285

prior. As discussed below, our algorithm can overshoot the true state when 0 < b < g < 1286

but not when b = 0 and g = 1. We therefore discuss the theoretical properties of the287

algorithm both for the general case and the special case below.288
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4 Robust recalibration289

As discussed in Section 1, the traditional approach to extremizing compares the average290

probability prediction P = 1
N

N∑
i=1

Pi to the threshold of 0.5 for determining whether forecasts291

are extremized towards 0 or 1. This approach can improve forecasts that are too conservative,292

but problems can arise in some settings where the prior is not 0.5. Figure 1 illustrates the293

potential problem. The prior is biased towards 1 and the average prediction in the bad state294

is above 0.5. As seen in Equation 1, the LLO transformation leads to either t(P̄ ) > P̄ > 0.5295

or t(P̄ ) < P̄ < 0.5 for P̄ ̸= 0.5. Figure 1 depicts an example where E[P |ωB] > 0.5 while296

b < 0.5. Thus, in state ωB, t(P̄ ) is expected to be even more inaccurate than the original297

average probability. We refer to such problems as being wrong sided:298

Definition 1 (Wrong-sided average prediction). Average prediction P̄ is wrong-sided if i)299

ω = ωG and P̄ < 0.5 < g or, ii) ω = ωB and P̄ > 0.5 > b.300

Extremization away from 0.5 increases the miscalibration in a wrong-sided average pre-301

diction. When can the average prediction be wrong-sided? First, it must be the case that302

P (s∅) ̸= 0.5 for forecasts to be wrong-sided as the sample size grows infinitely large. To see303

this, note that in a two-state environment, E[P |ωB] < P (s∅) < E[P |ωG] and the average304

prediction will be the expected prediction in each state as the sample grows large. Second,305

wrong-sidedness can only occur in one of the two states. This follows from the fact that306

the prior is always between 0 and 1 and the expected posterior is equal to the prior. This307

implies that on average extremization away from 0.5 can still be beneficial (as found in the308

literature) but suggests that an algorithm that better identifies cases where wrong-sidedness309

may occur can improve accuracy.310

To account for situations where the average prediction can be wrong-sided, we propose311

the following Robust Recalibration procedure. We first use the data to estimate the prior.312

Following a similar approach to Palley and Satopää (2023), we allow for random noise ϵ in313
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reported meta-predictions and assume:314

Mk = β0 + β1Pk + ϵ. (6)

Denoting the estimates {β̂0, β̂1}, the predicted probability at the prior is found by finding315

the probability where the prediction and meta-prediction are equal. This will be given by316

P̂ (s∅) = β̂0/(1− β̂1) for β̂1 ̸= 1.317

Next, using the estimated uninformed prediction P̂ (s∅), we propose a transformation318

function tRR(P̄ ) that satisfies the following expression:319

log

(
tRR(P̄ )

1− tRR(P̄ )

)
= log

(
P̄

1− P̄

)
+ γ

[
log

(
P̄

1− P̄

)
− log

(
P̂ (s∅)

1− P̂ (s∅)

)]
. (7)

Equation 7 suggests a linear transformation in log odds where (i) P̄ ≥ P̂ (s∅) is adjusted320

towards 1 and (ii) P̄ < P̂ (s∅) is adjusted towards zero 0 when γ ≥ 0. Note that for321

P̂ (s∅) = 0.5, Equation 7 is the same as Equation 2 with a reparametrization of the slope—322

1+ γ instead of γ—and an intercept of zero. Thus, in the special case of the estimated prior323

being unbiased (P̂ (s∅) = 0.5), tRR reduces to the LLO transformation away from 0.5 with324

δ = 1, also known as the Karmarkar equation (Karmarkar, 1978).325

Solving Equation 7 for tRR(P̄ ), we get

tRR(P̄ ) =
δP̄ 1+γ

δP̄ 1+γ + (1− P̄ )1+γ
(8)

where δ = [(1− P̂ (s∅)/P̂ (s∅)]
γ. Unlike simple extremization away from 0.5, tRR(P̄ ) is robust326

to wrong-side average predictions. The average is transformed away from P̂ (s∅) instead327

of 0.5. If P̂ (s∅) estimates the unknown P (s∅) accurately, we should expect tRR to adjust328

wrong-sided average predictions in the correct direction.329

Our algorithm essentially uses two pieces of information to transform the average pre-330

diction. The first is the estimated common prior which reflects all the commonly shared331
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information in the system. We treat this information as being important to prediction, but332

do not recalibrate it as it reflects information that is common across all forecasters. The sec-333

ond is the difference between the actual prediction and the common prior. This value reflects334

the average change in prediction based on the private signals available to the forecasters. As335

these signals are likely to have less overlap, using the average is likely to be conservative.336

Thus, by extremizing the difference, we hope to improve the outcome of the estimate.337

We note an important factor in the relative performance of robust recalibration. The338

extent of transformation in robust recalibration depends on both γ and P̂ (s∅), while simple339

extremization always uses P̂ (s∅) = 0.5. Thus, the step size for adjustment in the two340

methods may differ for the same value of γ. Note that for 0 < b < g < 1, either method341

may over-adjust and produce more extreme probabilities than b and g in the corresponding342

state. The remainder of this section provides a comparative discussion on the properties of343

robust recalibration.344

In problems that are wrong-sided, simple extremization will adjust predictions away from345

the true probability of the event while robust recalibration will adjust predictions in the346

direction of the true probability. As mentioned above, the extent of transformation is also347

a factor in accuracy. Proposition 1 compares simple extremization and robust recalibration348

in wrong-sided problems.349

Proposition 1. Suppose that the decision problem is wrong-sided. Then, there exists a350

threshold g′(b′) in state ωG(ωB) such that, for all g > g′ (b < b′), robust recalibration leads351

to a lower average Brier score than extremization away from 0.5 for any identical tuning352

parameter γ in the limit as the sample size goes to infinity. The threshold becomes more353

extreme (g′ to 1, b′ to 0) as |P̄ − P (s∅)| increases.354

Proposition 1 establishes that robust recalibration achieves higher accuracy in wrong-355

sided problems where the true probabilities in the good and bad state are sufficiently extreme.356

In other problems, however, there is the potential that robust recalibration “overshoots”357

the true probability. To illustrate with a numerical example, suppose ω = ωG, g = 0.55,358
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P (s∅) = 0.3, P̄ = 0.49 and let γ = 1. Robust-recalibrated probability is 0.68, while simple359

extremization leads to 0.48. Robust recalibration transforms in the correct direction, but360

the overadjustment produces a less accurate prediction. Such overadjustment becomes more361

likely when the adjustment of robust recalibration is larger, which occurs when P̄ is further362

away from P (s∅).363

The benefits of a proper probability transformation are highest when the true probabil-364

ity is close to 0 or 1. These problems represent situations where extremizing in the wrong365

direction is very costly in terms of accuracy and where there is little chance that robust re-366

calibration overshoots the true probability. A special case where robust recalibration always367

improves the Brier score is one where b = 0 and g = 1. In these problems, it is not possible368

to overshoot the true probability through recalibration and a more extreme forecast is better369

on average as the sample grows large.370

Proposition 2. Suppose that the decision problem is wrong-sided, b = 0 and g = 1. Then371

robust recalibration leads to a strictly lower average Brier score than extremization away from372

0.5 for any identical tuning parameter γ in the limit as the sample size goes to infinity.373

Proposition 2 follows from the observation that, unlike simple extremization, robust374

recalibration transforms wrong-sided average forecasts towards the correct extreme. Since375

over-adjustment is not a concern for b = 0 and g = 1, robust recalibration achieves strictly376

higher accuracy.377

In decision problems where average forecast is not wrong-sided, both robust recalibration378

and simple extremization will adjust forecasts in the direction of the true state and therefore379

will lead to relatively similar forecasts. However, the intensity of adjustment could differ due380

to prior. This may affect the relative accuracy of the two algorithms depending on the extent381

to which the average forecast needs to be extremized. To illustrate, consider a simple example382

where ω = ωG, g = 0.75, P̄ = 0.6, P (s∅) = 0.4 and γ = 1. As the sample of forecasters383

grow to infinity, robust recalibration recovers P (s∅) and transforms according to Equation 8384

with δ = 1.5, which leads to a robust-recalibrated probability of 0.77. Simple extremization385
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applies the same transformation with δ = 1 and produces an extremized probability of 0.69.386

Since g = 0.75, robust recalibration achieves higher accuracy. Now suppose P (s∅) = 0.55387

instead. Then, robust-recalibrated probability becomes 0.65 and simple extremization is388

more accurate. The opposite result would be true if g is closer to 0.5 and thus, requires a389

smaller extremizing adjustment. As a result, we can establish a general result only for the390

special case of b = 0 and g = 1.391

Proposition 3. Suppose that the decision problem is not wrong-sided, b = 0 and g = 1.392

Then, robust recalibration achieves a lower average Brier score than extremizing away from393

0.5 for any identical tuning parameter γ if |P̄ −P (s∅)| > |P̄ − 0.5| in the limit as the sample394

size goes to infinity.395

In Proposition 3, |P̄ − P (s∅)| > |P̄ − 0.5| is simply a condition for a larger extrem-396

izing adjustment in robust recalibration than simple extremization. Since, extremizing is397

always beneficial and over-adjustment is not a concern, the algorithm with a more intensive398

extremization achieves higher accuracy.399

Taking these propositions together, robust recalibration is likely to improve accuracy in400

most wrong-sided decision problems. Robust recalibration is strictly preferable in particular401

for questions where a binary truth (conditional on the state) exists and extremizing adjust-402

ments cannot overshoot the true probability. In problems where the average forecast is not403

wrong-sided, relative performance depends on the size of the extremizing adjustment, which404

is determined by how the prior prediction compares to 0.5. We may expect similar perfor-405

mance to simple extremization when estimated priors are in the vicinity of the uninformative406

prior.407

Before continuing to the empirical section of the paper, it is useful to discuss how we have408

set the tuning parameter γ in our empirical analysis. Recall that γ controls the intensity of409

extremization away from the estimated prior. As shown in Figure 1, the expected prediction410

in states {ωB, ωG} satisfies b < E[P |ωB] < P (s∅) < E[P |ωG] < g. Perfect calibration is411

achieved when extremization away from P (s∅) is such that the transformed probability is b412
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in state ωB and g in state ωG. The optimal value of γ depends on the level of conservatism413

in the average prediction and informativeness of the prior prediction. To illustrate, suppose414

the actual state is ωG. Given P (s∅) < E[P |ωG] < g, optimal γ is lower if P (s∅) is closer to415

g. In contrast, optimal γ would be higher if the prior is biased towards b.416

Robust recalibration does not know the optimal value of γ as b and g are unknown, and417

additional information (such as past data) that may allow estimation of γ is assumed to be418

unavailable within a single-question aggregation problem. In what follows, we present a wide419

range of values of γ to investigate how sensitive our approach is to the tuning parameter.420

Further, when making performance comparisons to other single-question algorithms, we have421

restricted attention to the tuning parameter range suggested in Baron et al. (2014) and show422

that our algorithm outperforms the others for both the largest and smallest parameter in423

this range.424

Section 5 tests the robust recalibration method tRR(P̄ ) using a variety of experimental425

data sets. Note that the case of P̂ (s∅) = 0.5 (Karmarkar equation) corresponds to the ex-426

tremizing transformation proposed by Baron et al. (2014). Their LLO extremization can427

be considered as an implementation of tRR where all decision problems are considered unbi-428

ased. Thus, we will consider tRR(P̄ ) with P̂ (s∅) = 0.5 in all problems as a benchmark that429

represents “always extremize away from 0.5”. This benchmark allows us to evaluate if the430

use of meta-predictions to estimate P (s∅) improves the calibration. The analysis will then431

compare tRR with various single-question aggregation mechanisms that generate probability432

forecasts.433

5 Empirical evidence434

This section presents empirical evidence for the effectiveness of robust recalibration. We435

use data from experimental prediction tasks where subjects are asked to report a meta-436

prediction as well as their prediction. Section 5.1 introduces the data sets. Section 5.2437
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presents preliminary evidence on the existence of wrong-sided average predictions and dis-438

cusses estimated priors. Section 5.3 offers a comparative analysis on the calibration of439

transformed probabilities.7440

5.1 Data Sets441

We investigate the empirical performance of robust recalibration using four distinct types442

of experimental tasks taken from Wilkening et al. (2022) and Howe et al. (2024). Appendix443

C provides example questions from each data set.444

The first set of data consists of simple true/false scientific statements. For each statement,445

participants report a probabilistic prediction on the statement being true as well as a meta-446

prediction on the average of other participants’ predictions. Wilkening et al. (2022) collected447

data from 500 such statements while Howe et al. (2024) replicated the experiment using a448

subset of these statements. Each implementation recruited a new sample of participants.449

Thus, we treat each statement-forecasting crowd combination as a distinct forecasting task.450

The resulting “Science” data set includes 680 tasks in total and the number of participants451

in a task varied between 79 and 98.452

The second data set, referred to as “States” data, was also collected by Wilkening et al.453

(2022). Each task presented a statement on the largest city of a U.S. state being the capital454

city of the corresponding state. As seen in Prelec et al. (2017), many people erroneously455

predict that the largest city is highly likely to be the state capital when they do not know456

the true answer. As such, the dataset is naturally biased towards true. The States data set457

includes 50 tasks. In each task, a total of 89 subjects reported probabilistic predictions and458

meta-predictions on the truth of each statement.459

Howe et al. (2024) collected predictions and meta-predictions on various other domains460

and we use their questions related to art and NFL trivia. In the “Artwork” data set, subjects461

saw a picture of a drawing and were asked to predict how likely it is that the market value462

7Supplemental material includes the datasets and R scripts to reproduce all results (Neuwirth, 2022; R
Core Team, 2023; RStudio Team, 2020; Wickham, 2007; Wickham et al., 2019).
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was more than $10000. Our data includes 40 decision problems that were repeated in two463

separate experiments to produce 80 total tasks. The sample size for each task varied between464

79 and 87 forecasters. The “NFL” domain tasks presented 50 trivia statements about the465

NFL draft to a US-based subject pool. Similar to the Artwork data, two runs produced 100466

tasks in total. The sample size per task was either 98 or 99.467

We note that in two tasks of the Science data, the estimated priors used in the robust468

recalibration algorithm were outside (0, 1). This can be considered as a failure to estimate469

P (s∅) accurately. Appendix D provides the estimated meta-prediction functions and reveals470

that these were questions where almost all forecasters perfectly predicted the correct answer.471

Thus, it is likely that these are problems where there is very limited amounts of private472

information regarding the true state and where idiosyncratic noise in meta-predictions played473

a large role. We exclude these two science tasks from the results in Section 5.3 and discuss474

the issue as a potential limitation of our approach in Section 6.8475

Excluding the two science questions, we had a total of 908 tasks in our data.476

5.2 Preliminary evidence on priors and wrong-sided average pre-477

dictions478

Robust recalibration is expected to improve over simple extremization in transforming479

wrong-sided average probabilities. Thus, a first step in the analysis is to evaluate the extent480

to which wrong-sidedness is a problem in the data.481

As with most practical forecasting problems, we cannot directly observe the correctly482

calibrated values of g and b in each of our decision problems. Thus, to classify problems as483

being wrong-sided, we have to make an assumption regarding these values. In this section,484

we will assume that b = 0 and g = 1 so that the state corresponds to the true answer. This485

assumption is based on the fact that the majority of decision problems are questions that486

8Alternative approaches to dealing with these two observations such as ignoring the bounds on the prior
and running the algorithm or using the original prediction do not change the significance of any test in the
paper.
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have an objectively correct answer that could be known by a very well-informed forecaster.487

Thus, the true state could potentially be predicted by a forecaster who receives an infinite488

number of draws from the potential information system. For b = 0 and g = 1, Propositions489

2 and 3 predict that the robust recalibration algorithm achieves higher accuracy than simple490

extremization in wrong-sided problems, while performance could be comparable in others.491

Thus, we expect robust recalibration to improve accuracy on average.492

Figure 2 shows the number of tasks in each data set where the average prediction is493

wrong-sided under the above assumption that b = 0 and g = 1. As seen, the average494

prediction is wrong-sided in a considerable number of tasks in each of the data sets. Further,495

wrong-sided averages are more common in false statements in all task types, suggesting that496

there is a bias towards true in all datasets.497
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Figure 2: The number of wrong-sided averages in each data set.

Figure 3 estimates the prior using the first stage of our robust recalibration procedure and498

also supports the conjecture that there is a bias towards true in the data. Estimated priors are499

typically higher than 0.5. As such, there are likely to be cases where the robust recalibration500

algorithm transforms an average prediction above 0.5 towards 0 while extremization pushes501
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the same average further towards 1.502
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Figure 3: The distribution of estimated priors in each data set.

To understand how the estimated priors influence extremization, we also report the num-503

ber of decision problems where standard recalibration and robust recalibration procedure504

recalibrate forecasts towards and away from the true outcome. Tables 1a and 1b show how505

average predictions compare to 0.5 and the estimated priors respectively. Observations along506

the diagonal are extremized in the correct direction while observations in the off-diagonal507

are adjusted in the wrong direction. As can be seen, there are 263 observations in which508

the average prediction is above 0.5 but the correct answer is false. Of these, the robust509

recalibration algorithm correctly anti-extremizes 223 observations, while the remaining 40510

are still transformed towards 1 as the average prediction is above the estimated prior as well.511

There are also 415 observations in which the average prediction is above 0.5 and the correct512

answer is true. Of these, the robust recalibration algorithm incorrectly anti-extremizes 146513
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observations and the remaining 269 are correctly transformed towards 1. We evaluate how514

these differences in prediction affect accuracy and calibration in the next section.515

(a)

Correct answer

True False Total

P̄ > 0.5 415 263 678

P̄ < 0.5 21 209 230

Total 436 472 908

(b)

Correct answer

True False Total

P̄ > P̂ (s∅) 269 40 309

P̄ < P̂ (s∅) 167 432 599

Total 436 472 908

Table 1: Average prediction vs. 0.5 or estimated prior for “True” and “False” statements

5.3 Results516

This section investigates the accuracy and calibration of the robust-recalibrated proba-517

bility forecasts. We run comparative analyses where alternative methods are implemented518

as benchmarks. The first analysis compares robust recalibration to the average prediction519

and the average extremized away from 0.5. The former is the untransformed simple aver-520

age of predictions while the latter transforms the average prediction using Equation 8 with521

P̂ (s∅) = 0.5, which corresponds to δ = 1. We consider γ ∈ {0.5, 1, 1.5, 2, 2.5, 3} in our522

implementations of Equation 8 for both extremization and robust recalibration.523

Our second analysis compares robust recalibration to various alternative single-question524

aggregation algorithms that use meta-predictions to improve accuracy. To make comparisons525

here meaningful, we restrict attention to the range of parameters suggested in Baron et al.526

(2014) and report results using γ ∈ {1.5, 2}, which correspond to the suggested lowest and527

highest values in our reparametrization. We will consider our algorithm as outperforming528

an alternative if it achieves higher accuracy for both values of γ considered.529

The main text reports the analysis when all 908 tasks are used as the basis of the analysis.530

We provide summary statistic tables for the figures provided in the main text in Appendix E.531

We also provide an alternative analysis where we compare performance for each of the four532
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prediction tasks separately in Appendix F.533

5.3.1 A comparison of robust recalibration to the average prediction and the534

average extremized away from 0.5535

Figure 4 shows the distribution of Brier scores of the average prediction, extremized536

average and robust-recalibrated prediction across all tasks.9 Lower scores indicate more537

accurate forecasts. Each row in the 3×6 grid shows the implementation of extremization away538

from 0.5 and robust recalibration for various values of γ. We also classify the tasks in terms539

of how extreme the untransformed average prediction is. Average probability predictions540

above 0.5 correspond to the confidence for “True”, while for an average probability below541

0.5, one minus the probability gives the confidence for “False”. The coloring in Figure 4542

breaks down the distribution of score for five different confidence levels of the corresponding543

average prediction.544

Figure 4 demonstrates that extremizing the average prediction away from 0.5 increases545

the expected accuracy. This result agrees with previous findings on extremization (Han &546

Budescu, 2022). The robust recalibration procedure offers additional improvements in Brier547

score over both the average and standard extremization approach for all potential γ parame-548

ters that we explored. As seen in Table 2, the performance difference between extremization549

and robust recalibration is significant for all values of γ in a paired Wilcoxon sign rank550

test that treats each decision problem as an observation. Table F1 in Appendix F performs551

pairwise tests separately for each data set and compares standard extremization to simple552

average of predictions as well. Robust recalibration achieves substantial and significant im-553

provement in the Science and States tasks, while the level of accuracy is similar to standard554

extremization in the Artwork and NFL trivia tasks.555

9Summary statistics for this analysis is provided in Appedix E. Additional task-level analysis is available
in Appendix F.
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Figure 4: Brier scores of simple average, extremized average and robust-recalibrated proba-
bilities, 908 observations in each panel

γ Methods Avg.diff Med.diff Test stat. p-value

0.5 robust.recalibr extrem.average -0.0249 -0.0072 V=137,029 <0.0001

1 robust.recalibr extrem.average -0.0431 -0.0052 V=143,280 <0.0001

1.5 robust.recalibr extrem.average -0.0563 -0.0022 V=148,088 <0.0001

2 robust.recalibr extrem.average -0.0658 -0.0008 V=151,761 <0.0001

2.5 robust.recalibr extrem.average -0.0728 -0.0003 V=154,699 <0.0001

3 robust.recalibr extrem.average -0.0778 -0.0001 V=157,007 <0.0001

Table 2: Two-sided paired Wilcoxon signed rank test of Brier scores, Robust recalibration
vs Extremizing away from 0.5. Negative differences indicate higher accuracy for robust
recalibration.

Figure 4 also suggests that robust recalibration is particularly effective in transforming556

low-confidence average predictions. Robust recalibration achieves lower Brier scores when557

the corresponding average prediction is 50-60% confident, while extremization away from558
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0.5 leads to higher Brier scores for many such average predictions. Gains in accuracy are559

especially strong for larger γ. Figure 5 graphs pairwise difference in Brier scores between560

extremization and robust recalibration. In most tasks where robust recalibration achieves561

lower Brier scores than simple extremization, the corresponding average prediction is 50-60%562

confident.563
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Figure 5: Pairwise differences in Brier score, robust recalibration vs extremized average for
γ ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Negative differences indicate higher accuracy for robust recalibra-
tion.

Why does robust recalibration make the most difference in low-confidence average pre-564

dictions? Table 3 shows the number of wrong-sided average predictions by confidence across565

all tasks and reveals that most wrong-sided averages are within the 50-60% confidence cate-566

gory. Recall that wrong-sided averages occur mostly in false statements in our experimental567

prediction tasks (Table 1) and that estimated priors tend to be above 0.5. As such, simple568

extremization wrongly transforms these average prediction into high-confidence true pre-569

dictions. Robust recalibration, by contrast, pushes the average prediction away from the570
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estimated prior instead. This anti-extremization produces better Brier scores on average.571

Confidence of the average prediction (%)

50-60 60-70 70-80 80-90 90-100 Total

Wrong-sided 182 85 17 0 0 284

Not wrong-sided 198 160 163 94 9 624

Total 380 245 180 94 9 908

Table 3: Number of wrong-sided average predictions by confidence level.

As we noted in the previous section, robust recalibration also incorrectly anti-extremizes572

some observations that were true and that had an average prediction above 0.5. Such incor-573

rect recalibrations hurt accuracy relative to the theoretical optimal, but may or may not affect574

the overall calibration of the algorithm depending on the resulting predicted probabilities.575

To better understand how well the algorithm calibrates forecasts, we constructed calibration576

curves for each method by first separating the data into bins of {[0, 0.1], (0.1, 0.2], . . . , (0.9, 1]}577

based on the predictions of each method. We then plotted the predicted probability of true578

in each bin against the actual proportion of problems where true was the correct answer.579

Figure 6 shows the calibration curves with a separate panel for each γ in the analysis580

set. The shaded regions represent the range of proportion true at which the probability581

predictions in the corresponding bin are considered well-calibrated. Intuitively, the shaded582

regions are analogous to the 45-degree line of perfect calibration.583

Figure 6 suggests that the transformed probabilities from robust recalibration achieve584

better calibration than standard extremization and the average. In particular for γ ≥ 1.5,585

robust-recalibrated probabilities on true closely reflect the actual frequency of true in most586

bins. In contrast, for extremized averages, the actual proportion of true is typically lower587

than the predicted probability in the corresponding bin. In other words, extremized averages588

typically overestimate the probability of true. Figures 4 and 6 together imply that the robust589

recalibration presents a probability transformation that manages to improve both accuracy590

and calibration.591
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Figure 6: Calibration curves for simple average, extremized average and robust-recalibrated
probabilities.

5.3.2 A comparison of robust recalibration to other forecasting algorithms that592

use meta-predicitons593

Our analysis thus far compared robust recalibration to methods that do not use meta-594

prediction data. One might wonder how it performs against alternative existing methods595

that seek to use meta-predictions to produce forecasts. To answer this question, we formed596

predictions using a number of alternative algorithms that exist in the literature. We elaborate597

on how these algorithms were constructed before continuing on to our second comparative598

analysis.599

We consider four alternative algorithms that seek to exploit meta-predictions to improve600

forecasts:601
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1. Meta-probability weighting: This algorithm constructs a weighted average of prob-602

abilistic forecasts, where a forecaster’s weight is proportional to the absolute difference603

between her prediction and meta-prediction (Martinie et al., 2020). Consider the sce-604

nario where the average forecast is wrong-sided because only a minority of forecasters605

endorse the correct state. If accurate forecasters anticipate that they are in the mi-606

nority, we may observe a larger absolute difference between their own forecast and607

meta-prediction on the average forecast of others. In that case, such forecasters would608

be weighted more heavily, potentially transforming a wrong-sided forecast correctly in609

the opposite direction of extremization.610

2. Knowledge-weighting: This algorithm, developed in (Palley & Satopää, 2023), seeks611

to construct optimal weights that minimize the “peer-prediction gap”. This gap mea-612

sures the difference between a weighted average of forecasters meta-predictions and613

the actual realization of the average forecast. If forecasters use their information opti-614

mally in forming meta-predictions, the weights that minimize the peer-prediction gap615

minimize the error in aggregate forecast as well. Intuitively, if the accurate minority616

of forecasters are also more accurate in their meta-predictions, knowledge-weighting617

is expected to put a higher weight on their forecasts, which may transform a wrong-618

sided average forecast in the correct direction. Knowledge-weighting is applicable in all619

forms of continuous variables, including non-probabilistic predictions. The knowledge-620

weighted prediction was outside of [0, 1] in some of our tasks. We winsorize these621

predictions such that aggregates below 0 (above 1) are set at 0 (1).622

3. Minimal pivoting: This algorithm uses meta-prediction data to correct for a poten-623

tial shared-information bias in the average forecast (Palley & Soll, 2019). Information624

commonly available to forecasters may bias probabilistic forecasts in a particular direc-625

tion, which could lead to a wrong-side average forecast. Minimal pivoting adjusts the626

average forecast according to the difference between average forecast and the average627
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meta-prediction. Meta-predictions are expected to be influenced more heavily by the628

shared information because forecasters anticipate that their peers will also incorporate629

it in their forecasts. The pivoting procedure estimates the shared and private informa-630

tion in the crowd wisdom, and moves the average away from the shared component.631

Since shared information contains the prior, correction for the shared-information bias632

is analogous to an extremization away from the prior and it may improve the calibra-633

tion as well. Similar to the knowledge-weighting algorithm, transformed probabilities634

that are outside of [0, 1] are winsorized.635

4. Surprising Overshoot (SO) algorithm: This algorithm is another aggregation636

method that addresses the shared-information problem (Peker, 2023). Information637

available to a forecaster determines the meta-prediction as well as the prediction, result-638

ing in a positive correlation between the two. Then, prediction and meta-prediction of639

an individual should typically fall on the same side of a well-calibrated average predic-640

tion. As mentioned above, shared information biases meta-predictions more strongly.641

A significant difference between the percentage of predictions and meta-predictions642

that overshoot the average prediction would constitute an “overshoot surprise”, which643

suggests a miscalibration in the average prediction itself. The SO algorithm produces644

an aggregate forecast that corrects for the shared-information bias using the informa-645

tion in the size and direction of an overshoot surprise.646

As can be seen from the description above, the alternative meta-prediction methods do647

not have a tuning parameter and thus comparing these algorithms to the robust recalibration648

method with an extremization parameter that is optimized using a subset of the data is not649

a fair comparison. To avoid this issue, we instead compare methods using the upper and650

lower bounds of the parameters that are recommended in the litarature. Baron et al. (2014)651

estimated that the optimal parameter value in the standard LLO transformation (Equation 2)652

for the average forecast is between 2.5 and 3, depending on the expertise of forecasters. In653

our transformation (Equation 7), this would correspond to γ ∈ [1.5, 2], as we define the654
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tuning parameter as 1 + γ. When making direct comparisons, we report comparisons using655

both the lower and upper value in this set and consider the robust recalibration algorithm656

as an improvement only if it generates an improvement for both of these bounds.10657

Figure 7 presents the frequency distribution of Brier scores for each of the benchmark658

algorithms and our robust recalibration method. Panels in the second and third rows show659

the results for robust recalibration for each γ ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Similar to Figure 4, we660

color-coded the confidence levels of the average prediction in the corresponding prediction661

task to identify potential patterns over types of decision problems.662

robust.recalibr.γ=2.5 robust.recalibr.γ=3

robust.recalibr.γ=0.5 robust.recalibr.γ=1 robust.recalibr.γ=1.5 robust.recalibr.γ=2
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Figure 7: Brier scores of simple average, extremized average and robust-recalibrated proba-
bilities.

Figure 7 demonstrates that robust recalibration achieves very small Brier scores more663

often than the benchmarks, in particular for γ ≥ 1. The difference between the Brier scores664

10Table F3 in Appendix F provides comparisons for all γ ∈ {0.5, 1, 1.5, 2, 2.5, 3} for completeness.
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of algorithms is significant (ANOVA test, F-value = 5.371, p < 0.0001).665

We next look at pairwise comparisons of the robust recalibration method with γ ∈ {1.5, 2}666

to the other methods. Table 4 shows that the robust recalibration method achieves higher667

accuracy against all benchmarks for both values of γ. Table F4 in Appendix F reports the668

same pairwise tests for each dataset separately. We observe significantly higher accuracy669

for robust recalibration in the Science and States tasks but find that performance is similar670

between algorithms in the Arts and NFL trivia tasks. Thus the performance differences671

between algorithms are likely to relate to characteristics of the underlying data generating672

process.673

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=1.5 know.weight -0.0230 -0.0150 V=96,184 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight -0.0212 -0.0363 V=103,043 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 min.pivot -0.0296 -0.0257 V=103,024 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 surp.overshoot -0.0197 -0.0118 V=123,548 <0.0001 robust.recalibr

robust.recalibr.γ=2 know.weight -0.0257 -0.0216 V=102,362 <0.0001 robust.recalibr

robust.recalibr.γ=2 meta.prob.weight -0.0239 -0.0467 V=107,335 <0.0001 robust.recalibr

robust.recalibr.γ=2 min.pivot -0.0323 -0.0328 V=110,455 <0.0001 robust.recalibr

robust.recalibr.γ=2 surp.overshoot -0.0224 -0.0188 V=122,617 <0.0001 robust.recalibr

Table 4: Comparison of Brier scores, two-sided paired Wilcoxon signed rank tests, robust
recalibration with γ ∈ {1.5, 2} vs benchmarks.

In addition to the Brier score, we also constructed the calibration curve for each algorithm674

to understand how each algorithm is reshaping the predictions. These calibration curves are675

presented in Figure 8 and were constructed using the same methodology as Figure 6. As676

seen in the diagram, robust recalibration achieves better calibration than the alternatives in677

most bins for γ ∈ {1.5, 2, 2.5, 3}. Predicted probabilities of robust-recalibrated aggregates678

are very close to the actual frequencies. Similar to the results in accuracy above, robust679

recalibration with sufficiently high γ appears to improve calibration over the alternatives.680

34



γ = 2 γ = 2.5 γ = 3

γ = 0.5 γ = 1 γ = 1.5

[0
,0

.1
]

(0
.1

,0
.2

]

(0
.2

,0
.3

]

(0
.3

,0
.4

]

(0
.4

,0
.5

]

(0
.5

,0
.6

]

(0
.6

,0
.7

]

(0
.7

,0
.8

]

(0
.8

,0
.9

]

(0
.9

,1
]

[0
,0

.1
]

(0
.1

,0
.2

]

(0
.2

,0
.3

]

(0
.3

,0
.4

]

(0
.4

,0
.5

]

(0
.5

,0
.6

]

(0
.6

,0
.7

]

(0
.7

,0
.8

]

(0
.8

,0
.9

]

(0
.9

,1
]

[0
,0

.1
]

(0
.1

,0
.2

]

(0
.2

,0
.3

]

(0
.3

,0
.4

]

(0
.4

,0
.5

]

(0
.5

,0
.6

]

(0
.6

,0
.7

]

(0
.7

,0
.8

]

(0
.8

,0
.9

]

(0
.9

,1
]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Predicted probability of True

P
ro

p
o

rt
io

n
 T

ru
e

method min.pivot know.weight meta.prob.weight surp.overshoot robust.recalibr

Figure 8: Calibration curves for simple average, extremized average and robust-recalibrated
probabilities.

6 Conclusion681

Probabilistic forecasts are often too conservative, which leads to average probability fore-682

casts not being sufficiently extreme. Previous work documented that extremizing transfor-683

mations that adjust the average away from 0.5 improve calibration. However, such transfor-684

mations may have shortcomings. In some forecasting problems, the crowd may have a biased685

prior that favors a certain outcome. Then, the average forecast may put a higher probabil-686

ity on the wrong outcome even when individuals receive informative signals conditional on687

the correct outcome. Extremizing a wrong-sided average forecast would introduce further688

miscalibration.689

We show that forecasters’ meta-beliefs on others’ predictions can be used to estimate690
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the prior in single-question forecasting problems. We then propose a recalibration function691

that transforms the average away from the estimated prior instead of 0.5. A bias in crowd’s692

prior probability is reflected in the estimated prior. Thus, unlike simple extremization away693

from 0.5, robust recalibration is capable of correctly transforming wrong-side averages in the694

opposite direction of extremization, which should produce aggregate probability forecasts695

with better calibration.696

We test the performance of robust recalibration using prediction and meta-prediction697

data from four distinct experimental tasks. We implement robust recalibration with var-698

ious values of γ, which is a tuning parameter that controls the intensity of extremization699

away from the estimated prior. Our findings suggest that robust recalibration is effective in700

improving the accuracy and calibration of probability forecasts. We first demonstrate that701

robust recalibration outperforms simple extremization away from 0.5 for all values of γ we702

explored. Robust-recalibrated probabilities achieve lower Brier scores in most tasks and pre-703

dict the actual frequency of occurrence more accurately than extremized averages. Robust704

recalibration is particularly effective in transforming wrong-sided averages which are close705

to 50%, which characterize most wrong-sided averages in our data set. We show that, unlike706

simple extremization, prior estimation using meta-predictions can detect and transform such707

wrong-sided averages towards the correct extreme.708

We also compared robust recalibration to four single-question aggregation algorithms709

developed by recent work (Martinie et al., 2020; Palley & Satopää, 2023; Palley & Soll,710

2019; Peker, 2023). These algorithms also rely on meta-predictions as well as predictions,711

but unlike robust recalibration, they do not require a tuning parameter. Thus, they present712

natural alternatives to our algorithm when meta-prediction data are available. We find that713

robust recalibration achieves significantly higher accuracy in most tasks when using tuning714

parameters suggested in the literature. The method also improves calibration provided that715

γ is sufficiently high. Intuitively, the aggregation algorithms we considered are expected716

to achieve some improvement in accuracy over simple averaging. Robust recalibration real-717
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izes further gains when transformation away from the estimated prior is sufficiently strong,718

implying that prior estimation is effective in finding the correct direction to transform the719

average prediction.720

Similar to the benchmark algorithms, robust recalibration considers a single forecasting721

problem where no data other than predictions and meta-predictions are available. Optimal722

value of γ in a given problem is unknown. Our results suggest that the aggregator may723

prefer to be aggressive rather than cautious in extremizing away from the estimated prior.724

Subsequent work may test if this result generalizes to a larger set of forecast aggregation725

problems. Furthermore, task-level analysis suggests that there is heterogeneity in the relative726

effectiveness of our algorithm across the tasks studied. Robust recalibration achieved higher727

accuracy in Science and States tasks, while we see a similar performance to other benchmarks728

in Artwork and NFL tasks. Future work may investigate if the gains in accuracy differ in729

various other domains of forecasting as well.730

Robust recalibration procedure may have practical limitations due to the prior estima-731

tion stage. In two tasks out of 910 in our original data set, the estimated prior probability732

is not within (0, 1). Appendix D shows that the estimated meta-prediction functions in733

these two tasks imply meta-predictions outside (0, 1), leading to invalid prior estimates. We734

observe that in both tasks, predictions are clustered at the correct extreme (0 or 1 depend-735

ing on the correct answer). In other words, a strong majority of the forecasters were very736

accurate in their predictions. Robust recalibration uses a linear regression model to esti-737

mate the parameters. The actual meta-prediction function may not be estimated accurately738

when predictions are heavily clustered or the sample of forecasters is small. As discussed in739

Section 5.2, prior estimation is inaccurate if the estimated meta-prediction function implies740

meta-predictions outside of the probability scale. Thus, in practical applications, the aggre-741

gator can use the information from the estimation procedure to decide on the applicability742

of robust recalibration.743
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Appendices875

A Proofs876

Lemma 1877

This result is due to the fact that the expected posterior prediction generated from an878

information service is equal to the prediction that would be made at the prior. At the prior:879

P (s∅) = P (E|σk = s∅) =
∑
i

[P (E|si)P (si|s∅)]

=
∑
i

[qP (E|si)P (si|ωG) + (1− q)P (E|σi)P (si|ωB)]

= q
∑
i

[P (E|si)P (si|ωG)] + (1− q)
∑
i

[P (E|si)P (si|ωB)]

= qE[P |ωG] + (1− q)E[P |ωB].

In the main text, we showed that

M(σk) = σkE[P |ωG] + (1− σk)E[P |ωB].

and thus

M(s∅) = qE[P |ωG] + (1− q)E[P |ωB].

It follows immediately that P (s∅) = M(s∅).880

Proposition 1881

Consider the case ω = ωG. Following the notation in Equation 8, let tRR(P̄ ) denote

the robust-recalibrated probability. Also let tE(P̄ ) be simple-extremized probability (δ = 1

in Equation 8) with the same tuning parameter. Robust recalibration would achieve lower

average Brier score if (tRR(P̄ ) − g)2 < (tE(P̄ ) − g)2, i.e. when the robust-recalibrated
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probability is more accurate. This expression reduces to 1
2
(tRR(P̄ )+ tE(P̄ )) < g, which gives

1

2

(
δP̄ 1+γ

δP̄ 1+γ + (1− P̄ )1+γ
+

P̄ 1+γ

P̄ 1+γ + (1− P̄ )1+γ

)
< g

Note that lim
N→∞

P̂ (s∅) = P (s∅), i.e. estimated prior converges to the actual prior prediction882

at the limit. Thus, δ = [(1− P (s∅))/P (s∅)]
γ. Also note that lim

N→∞
P̄ = E[P |ωG] in state ωG.883

Since we consider wrong-sided problems, we have P (s∅) < P̄ < 0.5. Then, we have δ > 1 for884

any γ.885

We can define g′(δ) = 1
2
(tRR(P̄ )+tE(P̄ )) as the threshold such that, for g > g′(δ), tRR(P̄ )886

is strictly more accurate than tE(P̄ ) for any P̄ . Furthermore, g′(δ) increases as δ increases887

for all δ > 1. Since δ increases as P (s∅) decreases, g
′(δ) increases with |P̄ − P (s∅)|.888

A similar result can be obtained for ω = ωB. Robust recalibration is more accurate if889

(tRR(P̄ ) − b)2 < (tE(P̄ ) − b)2 is satisfied, which reduces to 1
2
(tRR(P̄ ) + tE(P̄ )) > b. We890

now have lim
N→∞

P̄ = E[P |ωB], 0.5 < P̄ < P (s∅), and δ < 1 for any γ. We can define891

b′(δ) = 1
2
(tRR(P̄ ) + tE(P̄ )), which decreases as P (s∅) increases, implying that the threshold892

b′(δ) decreases with |P̄ − P (s∅)|.893

Proposition 2894

From the proof of Proposition 1, we know that δ > 1 for ω = ωG and δ < 1 for ω = ωB.895

Then, we simply have tE(P̄ ) < tRR(P̄ ) < g = 1 for ω = ωG and b = 0 < tRR(P̄ ) < tE(P̄ ). In896

both states, robust-recalibrated probability is strictly more accurate.897

Proposition 3898

Consider the case ω = ωG. Since average forecast is not wrong sided, we have 0.5 <899

P̄ < 1. As in the proof of Proposition 1, let tRR(P̄ ) and tE(P̄ ) denote robust-recalibrated900

and extremized probabilities. We have tE(P̄ ) < tRR(P̄ ) < 1 ⇐⇒ δ > 1, which requires901

P (s∅) < 0.5. Thus, tRR(P̄ ) is strictly more accurate when |P̄ −P (s∅)| > |P̄ − 0.5|. Similarly902
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for ω = ωB, we have 0 < tRR(P̄ ) < tE(P̄ ) ⇐⇒ δ < 1, which holds for P (s∅) > 0.5, and903

0 < P̄ < 0.5. So, tRR(P̄ ) outperforms tE(P̄ ) when |P̄ − P (s∅)| > |P̄ − 0.5|.904

B Robust Recalibration with more than two states905

In the main text, we showed that it is always possible to correctly estimate the prior using906

prediction and meta-predictions in an environment where there are exactly two states. This907

ensured that the algorithm would always identify the correct direction for extremization908

in large sample. In this section, we use two examples to show that the properties of the909

algorithm are not guaranteed when there are more than two states. The first example shows910

that the prediction and meta-prediction lines may cross multiple times when we increase the911

state space and that the estimated prior may not be correct. Nonetheless, the algorithm912

may still function well as long as the estimated prior still identifies the correct direction for913

extremization.914

The second example identifies a situation where our algorithm fails to extremize in the915

correct direction for one of the states. The counter-example highlights a case where the916

monotone likelihood ratio principal is violated and where signals are very informative about917

the signals of others but only weakly informative about the underlying likelihood of an event.918

In such cases, it is possible to construct situations where the meta-prediction line is non-919

linear and create perverse cases where the algorithm fails. We see such situations as being920

quite rare, but the possibility of such cases warrant an empirical exploration of the algorithm.921

In both examples, we use a general likelihood matrix Q where the rows correspond to922

states and the columns relate to signals. Predictions and meta-predictions can be written923

using the posterior beliefs for each state just as in Section 3.924

Example 1: Multiple Cross Points where the estimated posterior is incorrect925

but the direction of extremization is correct. Suppose there are four states with926

probabilities of E given by {.8, .6, .4, .2}. For simplicity, we will refer to the states by using927
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the corresponding probability. Forecasters have a prior of {1/4, 1/4, 1/4, 1/4} over the states.928

Each forecaster receives a signal from {s1, s2, s∅, s3, s4}. The likelihood matrix is given by929

Q =



0 0 0 1
3

2
3

0 0 0 2
3

1
3

1
3

2
3

0 0 0

2
3

1
3

0 0 0


.

Rows 1 to 4 (top to bottom) give the likelihoods for states 0.8, 0.6, 0.4 and 0.2 respectively930

while columns 1 to 5 (left to right) represents the signals s1, s2, s∅, s3 and s4. Unlike the binary931

framework, the signals do not represent the posterior beliefs on one of the states. However,932

signals with a higher index indicate a weakly higher posterior probability on the “best” state933

(i.e. state 0.8). In this example, {s3, s4} are generated when we are in state .8 or .6, while934

{s1, s2} occur in states .4 and .2. Posterior belief on state 0.8 is highest for s4, followed by935

s3 and s1, s2 where the last two imply zero probability. Figure B1 depicts the corresponding936

prediction and meta-prediction functions.937

Figure B1: Example 1 prediction and meta-prediction functions (linear extrapolations from
the predictions and meta-predictions at σk ∈ {s1, s2, s∅, s3, s4}).
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The prediction and meta-prediction functions intersect at two distinct values other than938

s∅. Thus, solving for M(x) = P (x) does not uniquely recover the prior. Nevertheless, this939

example demonstrates that robust recalibration could transform the average in the correct940

direction despite the inaccuracy in estimating P (s∅). To see this, we first calculate the941

average prediction, which are {0.71, 0.69, 0.31, 0.29} in states {0.8, 0.6, 0.4, 0.2} respectively.942

If the true state is 0.2 or 0.4, we get σk ∈ {s1, s2}. Then, the estimated prior will be943

0.3, as it would be the unique intersection of the prediction and meta-prediction functions944

in the corresponding range. Robust recalibration transforms 0.29 and 0.31 away from 0.3,945

which could lead to transformed probabilities closer to the true probability (0.2 and 0.4946

respectively). In contrast, extremizing away from 0.5 adjusts 0.31 in the wrong direction in947

state 0.4. A similar result holds in states 0.6 and 0.8. Then, the estimated prior will be 0.7.948

Average predictions of 0.69 and 0.71 are robust-recalibrated in the correct direction while949

extremizing away from 0.5 pushes 0.69 further away from the true probability of the event950

in state 0.6.951

Note that the robust recalibration procedure is effective even though it does not produce952

an accurate estimate of the actual prior (P (s∅)) in any state. The likelihood matrix suggests953

that the forecasters have a non-zero posterior probability for two states only. The prediction954

and meta-prediction functions are locally linear and estimated prior gives the intersection.955

Example 2: Violation of MLRP. Consider an example with three states with prob-

abilities {0.7, 0.4, 0}. Forecasters have a uniform prior {1/3, 1/3, 1/3} over the states. Prior

prediction is given by P (s∅) =
1
3
0.7 + 1

3
0.4 + 1

3
0 = 0.367. Each forecaster receives a signal

from {s1, s∅, s2, s3} according to the following likelihood matrix:

Q =


.3 0 1

3
.367

0 0 2
3

1
3

.7 0 0 .3


Rows 1 to 3 give the likelihoods of each signal in states 0.7, 0.4 and 0 respectively. Signals956

47



are ordered in the implied posterior belief on the best state (i.e. state 0.7) as s3 > s2 > s1.957

The prediction function satisfies P (s1) = 0.21, P (s2) = 0.5 and P (s3) = 0.39.958

For meta-predictions, we first calculate the average prediction in each state, which leads959

to E[P̄ |state = 0] = 0.264, E[P̄ |state = 0.4] = 0.463 and E[P̄ |state = 0.7] = 0.373. For any960

agent with signal σk ∈ {s1, s∅, s2, s3}, M(σk) will be a convex combination of E[P̄ |state] with961

weights being the posterior probabilities over the states. The resulting meta-prediction func-962

tion satisfies M(s1) = 0.296, M(s∅) = 0.367, M(s2) = 0.433 and M(s3) = 0.37. Figure B2963

depicts the prediction and meta-prediction functions.964

Figure B2: Example 2 prediction and meta-prediction functions

To see how robust recalibration performs, we randomly draw a sample of 10000 pre-965

dictions and meta-predictions according to the functions in Figure B2. Then, we intro-966

duce random noise in meta-predictions and estimate the prior as described in Section 4.967

This procedure is repeated 100 times. Average estimated priors in each state is given by968

{0.366, 0.344, 0.357} with standard errors strictly smaller than 0.001. Recall that the average969

predictions are 0.264, 0.463 and 0.373 in states 0, 0.4 and 0.7 respectively. Thus, the average970

should be recalibrated down in states 0 and 0.4 and up in state 0.7. Robust recalibration971
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transforms the average predictions in states 0 and 0.7 in the correct direction. However, in972

state 0.4, the robust recalibration procedure transforms the average in the wrong direction973

while extremization away from 0.5 would push the average towards 0.4.974

The miscalibration in state 0.4 is a result of s2 being very informative about the predic-975

tions of others and the likelihood that the state is not 0. Recall that the posterior beliefs976

for states {0.7, 0.4, 0} following s3 and s2 are {0.367, 1/3, 0.3} and {1/3, 2/3, 0} respectively.977

Signal s3 leads to the highest posterior belief on state 0.7 (followed by s2 and s1). However,978

s2 rules out the worst state and leads to a higher probability prediction and meta-prediction979

overall. Since s2 is more frequent in state 0.4, the resulting average prediction on the occur-980

rence of the event is higher in state 0.4 than state 0.7, even though the event is more likely981

in the latter.982

In the binary framework, signals can be normalized to represent the posterior beliefs on983

the good state (ωG). When the true state is ωG, signals favor a higher probability for the984

occurrence of E. Therefore, E[P̄ |ωG] > E[P̄ |ωB] always holds. The same is not necessarily985

true for the “best state” in a multiple state framework where a signal is informative for986

beliefs on more than one state. Likelihoods in state 0.4 (second row of Q) suggest that all987

forecasters observe s2 or s3, and the corresponding predictions are 0.5 and 0.39. However,988

in state 0.7 (first row of Q), 30% of forecasters will observe s1 and predict 0.21. As a result,989

E[P̄ |state = 0.4] > E[P̄ |state = 0.7]. In other words, the information conveyed by signals990

in state 0.4 favors high states (and hence, a higher probability for the event) more than991

the information in state 0.7 on average. Unlike the binary framework, average prediction is992

higher at a lower state. Such information structures are likely to be rare in practice, because993

it would imply that the evidence itself is expected to incorrectly suggest a higher probability994

for the occurrence of the event in a lower state. Thus, we expect robust recalibration to995

perform well in most applications with more than two states.996
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C Prediction tasks997

Table C1: Sample statements from Science and States data. See the supplemental material
of Wilkening et al. (2022) for full list of statements

Data set Statement

Science Scurvy and anemia are diseases not caused by bacteria or viruses

Science Secondary industries dominate the market in emerging economies

Science Earthquakes and volcanoes typically occur at the boundaries of tectonic

plates

Science A substance with a pH of 8 is a strong acid

Science Hamsters hate to run

Science Plant cells are easier to clone than animal cells

Science Convex lenses are used to correct for short-sightedness

Science Darwin’s theory was not widely accepted when it was first published in

the late 19th century

Science Increasing the number of impermeable rocks in rivers help decrease the

flood risk

States Jacksonville is the capital city of Florida

States Los Angeles is the capital city of California

States Denver is the capital city of Colorado
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Table C2: Sample NFL statements

Statement

In the 2018 NFL draft, Mark Andrews was drafted by the Minnesota Vikings

In the 2018 NFL draft, the New York Giants were the only team to draft a player out

of FCS champion North Dakota State University

In the 2017 NFL draft, the Big Ten was one of the athletic conferences where no players

were drafted that year

In the 2016 NFL draft, Rico Gathers was drafted by the Oakland Raiders

In the 2016 NFL draft, David Onyemata was drafted by the New Orleans Saints

In NFL rules, a player who wears illegal equipment is to be suspended for the next two

games

In NFL rules, a delay of game penalty at the start of either half is a 5-yard penalty

In NFL rules, the penalty for attempting to use more than 3 timeouts in a half is 5

yards

In NFL, a “Hail Mary” is a play in which the receivers are all sent downfield towards

the end zone

In NFL, a “two-point conversion” is a play a team attempts instead of kicking a one-

point conversion immediately after it scores a touchdown
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Figure C1: Sample items from the Artwork data set
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D Two tasks where robust recalibration failed to esti-998

mate the prior999

Figure D1 shows the estimated meta-prediction function for the two Science tasks where1000

estimated prior lies outside (0, 1). The statements are “Centimetres are a measure of length”1001

and “Fish have fur to keep them warm” with correct answers being true and false respectively.1002

Centimetres are a measure of length Fish have fur to keep them warm

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

Prediction

M
et

a−
pr

ed
ic

tio
n

Figure D1: Estimated meta-prediction functions (blue line) in two tasks where estimated
prior is not within (0, 1)

Estimated meta-prediction functions (as in Equation 6) are Mk = −0.0302 + 0.9778Pk1003

(left panel) and Mk = 0.1428+0.8622Pk (right panel). Note that β̂0 < 0 for “Centimetres are1004

a measure of length”, which leads to a negative estimated prior of −1.3602 from β̂0/(1− β̂1).1005

In “Fish have fur to keep them warm”, we have β̂0 + β̂1 = 1.0049 > 1, which leads to an1006

estimated prior of 1.0359. Estimated prior probabilities are not within (0, 1).1007
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E Summary statistics and additional figures1008
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Figure E1: The distribution of average predictions for “True” and “False” statements in
each data set.
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Figure E2: Correlation between predictions and meta-predictions. Each data point repre-
sents a task, 910 in total.
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method γ min max mean lower quartile median upper quartile

average 0.0018 0.5878 0.1901 0.0769 0.1737 0.2821

extrem.average 0.5 0.0001 0.7331 0.1859 0.0369 0.1418 0.2987

extrem.average 1 0.0000 0.8376 0.1886 0.0165 0.1143 0.3158

extrem.average 1.5 0.0000 0.9051 0.1944 0.0070 0.0909 0.3332

extrem.average 2 0.0000 0.9459 0.2012 0.0029 0.0715 0.3509

extrem.average 2.5 0.0000 0.9696 0.2083 0.0011 0.0556 0.3688

extrem.average 3 0.0000 0.9831 0.2150 0.0004 0.0428 0.3869

robust.recalibr 0.5 0.0001 0.6529 0.1610 0.0478 0.1314 0.2405

robust.recalibr 1 0.0000 0.7755 0.1455 0.0269 0.0968 0.2224

robust.recalibr 1.5 0.0000 0.8793 0.1381 0.0141 0.0689 0.2037

robust.recalibr 2 0.0000 0.9380 0.1354 0.0068 0.0494 0.1918

robust.recalibr 2.5 0.0000 0.9689 0.1355 0.0031 0.0370 0.1809

robust.recalibr 3 0.0000 0.9846 0.1372 0.0014 0.0259 0.1715

Table E1: Summary statistics, Brier scores in Figure 4.

method γ min max mean lower quartile median upper quartile

min.pivot 0.0000 0.7031 0.1677 0.0527 0.1399 0.2512

know.weight 0.0000 1.0000 0.1611 0.0366 0.1136 0.2377

meta.prob.weight 0.0014 0.6384 0.1593 0.0723 0.1315 0.2207

surp.overshoot 0.0000 0.7569 0.1578 0.0324 0.1024 0.2500

robust.recalibr 0.5 0.0001 0.6529 0.1610 0.0478 0.1314 0.2405

robust.recalibr 1 0.0000 0.7755 0.1455 0.0269 0.0968 0.2224

robust.recalibr 1.5 0.0000 0.8793 0.1381 0.0141 0.0689 0.2037

robust.recalibr 2 0.0000 0.9380 0.1354 0.0068 0.0494 0.1918

robust.recalibr 2.5 0.0000 0.9689 0.1355 0.0031 0.0370 0.1809

robust.recalibr 3 0.0000 0.9846 0.1372 0.0014 0.0259 0.1715

Table E2: Summary statistics, Brier scores in Figure 7.
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F Results by data set1009

(a) Brier scores, Artwork data only.
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(b) Brier scores, NFL data only.
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(c) Brier scores, Science data only.
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(d) Brier scores, States data only.
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Figure F1: Brier scores of simple average, extremized average and robust-recalibrated prob-
abilities.
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(a) Brier scores, Artwork data only.
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(b) Brier scores, NFL data only.
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(c) Brier scores, Science data only.
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(d) Brier scores, States data only.
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Figure F2: Brier scores of robust recalibration and other benchmarks.
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(a) Artwork data only

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value Signif. better?

0.5 extrem.average average 0.0135 0.0096 V=2,121 0.0164 Method.2

0.5 robust.recalibr extrem.average -0.0105 -0.0032 V=1,215 0.0524 No diff.

1 extrem.average average 0.0292 0.0193 V=2,149 0.0112 Method.2

1 robust.recalibr extrem.average -0.0169 0.0021 V=1,261 0.0855 No diff.

1.5 extrem.average average 0.0460 0.0291 V=2,174 0.0079 Method.2

1.5 robust.recalibr extrem.average -0.0206 0.0130 V=1,334 0.1709 No diff.

2 extrem.average average 0.0630 0.0391 V=2,213 0.0045 Method.2

2 robust.recalibr extrem.average -0.0224 0.0265 V=1,379 0.2487 No diff.

2.5 extrem.average average 0.0795 0.0492 V=2,234 0.0033 Method.2

2.5 robust.recalibr extrem.average -0.0232 0.0281 V=1,414 0.3243 No diff.

3 extrem.average average 0.0951 0.0594 V=2,249 0.0026 Method.2

3 robust.recalibr extrem.average -0.0230 0.0212 V=1,446 0.4053 No diff.

(b) NFL data only

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value Signif. better?

0.5 extrem.average average -0.0067 -0.0129 V=1,557 0.0009 Method.1

0.5 robust.recalibr extrem.average -0.0051 -0.0079 V=2,130 0.1750 No diff.

1 extrem.average average -0.0098 -0.0254 V=1,627 0.0020 Method.1

1 robust.recalibr extrem.average -0.0062 -0.0097 V=2,303 0.4463 No diff.

1.5 extrem.average average -0.0106 -0.0373 V=1,699 0.0045 Method.1

1.5 robust.recalibr extrem.average -0.0044 -0.0080 V=2,440 0.7714 No diff.

2 extrem.average average -0.0102 -0.0452 V=1,772 0.0097 Method.1

2 robust.recalibr extrem.average -0.0007 -0.0055 V=2,508 0.9548 No diff.

2.5 extrem.average average -0.0089 -0.0531 V=1,849 0.0202 Method.1

2.5 robust.recalibr extrem.average 0.0042 -0.0034 V=2,571 0.8757 No diff.

3 extrem.average average -0.0072 -0.0622 V=1,900 0.0318 Method.1

3 robust.recalibr extrem.average 0.0098 -0.0020 V=2,604 0.7872 No diff.
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(c) Science data only

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value Signif. better?

0.5 extrem.average average -0.0063 -0.0254 V=81,582 <0.0001 Method.1

0.5 robust.recalibr extrem.average -0.0264 -0.0050 V=74,929 <0.0001 Method.1

1 extrem.average average -0.0045 -0.0377 V=87,242 <0.0001 Method.1

1 robust.recalibr extrem.average -0.0461 -0.0024 V=78,104 <0.0001 Method.1

1.5 extrem.average average 0.0006 -0.0431 V=91,266 <0.0001 Method.1

1.5 robust.recalibr extrem.average -0.0608 -0.0007 V=80,416 <0.0001 Method.1

2 extrem.average average 0.0069 -0.0471 V=94,089 <0.0001 Method.1

2 robust.recalibr extrem.average -0.0718 -0.0002 V=82,239 <0.0001 Method.1

2.5 extrem.average average 0.0134 -0.0489 V=96,155 0.0002 Method.1

2.5 robust.recalibr extrem.average -0.0801 -0.0001 V=83,672 <0.0001 Method.1

3 extrem.average average 0.0195 -0.0510 V=97,698 0.0007 Method.1

3 robust.recalibr extrem.average -0.0864 -0.0000 V=84,804 <0.0001 Method.1

(d) States data only

γ Method.1 Method.2 Avg.diff Med.diff Test stat. p-value Signif. better?

0.5 extrem.average average 0.0002 -0.0116 V=584 0.6089 No diff.

0.5 robust.recalibr extrem.average -0.0667 -0.0808 V=155 <0.0001 Method.1

1 extrem.average average 0.0071 -0.0224 V=640 0.9846 No diff.

1 robust.recalibr extrem.average -0.1183 -0.1256 V=161 <0.0001 Method.1

1.5 extrem.average average 0.0170 -0.0276 V=688 0.6293 No diff.

1.5 robust.recalibr extrem.average -0.1566 -0.1465 V=171 <0.0001 Method.1

2 extrem.average average 0.0279 -0.0316 V=708 0.4992 No diff.

2 robust.recalibr extrem.average -0.1850 -0.1593 V=187 <0.0001 Method.1

2.5 extrem.average average 0.0388 -0.0350 V=725 0.401 No diff.

2.5 robust.recalibr extrem.average -0.2069 -0.1604 V=192 <0.0001 Method.1

3 extrem.average average 0.0494 -0.0357 V=741 0.3201 No diff.

3 robust.recalibr extrem.average -0.2244 -0.1563 V=196 <0.0001 Method.1

Table F1: Two-sided paired Wilcoxon signed rank tests of Brier scores in each data set.
Compares robust recalibration, extremizing away from 0.5 and simple average.

Data set Degrees of Freedom Mean Sq. Error F-stat p-value
Artwork 9 0.0438 1.097 0.362
NFL 9 0.00388 0.142 0.998

Science 9 0.1919 8.125 < 0.0001
States 9 0.07304 13.99 < 0.0001

Table F2: One-way ANOVA test of Brier scores across 10 methods (four benchmark algo-
rithms and robust recalibration with γ ∈ {0.5, 1, 1.5, 2, 2.5, 3}) in each data set. Results
suggest significant differences in Science and States data.

62



Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight -0.0001 0.0021 V=247,540 <0.0001 know.weight

robust.recalibr.γ=0.5 meta.prob.weight 0.0017 -0.0075 V=200,532 0.4623 No difference

robust.recalibr.γ=0.5 min.pivot -0.0067 -0.0017 V=121,239 <0.0001 robust.recalibr

robust.recalibr.γ=0.5 surp.overshoot 0.0032 0.0053 V=246,687 <0.0001 surp.overshoot

robust.recalibr.γ=1 know.weight -0.0156 -0.0056 V=123,231 <0.0001 robust.recalibr

robust.recalibr.γ=1 meta.prob.weight -0.0138 -0.0238 V=121,218 <0.0001 robust.recalibr

robust.recalibr.γ=1 min.pivot -0.0222 -0.0164 V=93,364 <0.0001 robust.recalibr

robust.recalibr.γ=1 surp.overshoot -0.0123 -0.0047 V=153,070 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 know.weight -0.0230 -0.0150 V=96,184 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight -0.0212 -0.0363 V=103,043 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 min.pivot -0.0296 -0.0257 V=103,024 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 surp.overshoot -0.0197 -0.0118 V=123,548 <0.0001 robust.recalibr

robust.recalibr.γ=2 know.weight -0.0257 -0.0216 V=102,362 <0.0001 robust.recalibr

robust.recalibr.γ=2 meta.prob.weight -0.0239 -0.0467 V=107,335 <0.0001 robust.recalibr

robust.recalibr.γ=2 min.pivot -0.0323 -0.0328 V=110,455 <0.0001 robust.recalibr

robust.recalibr.γ=2 surp.overshoot -0.0224 -0.0188 V=122,617 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 know.weight -0.0256 -0.0240 V=110,829 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 meta.prob.weight -0.0238 -0.0550 V=114,400 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 min.pivot -0.0322 -0.0383 V=116,401 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 surp.overshoot -0.0223 -0.0220 V=125,542 <0.0001 robust.recalibr

robust.recalibr.γ=3 know.weight -0.0239 -0.0274 V=118,513 <0.0001 robust.recalibr

robust.recalibr.γ=3 meta.prob.weight -0.0221 -0.0588 V=120,723 <0.0001 robust.recalibr

robust.recalibr.γ=3 min.pivot -0.0305 -0.0421 V=121,302 <0.0001 robust.recalibr

robust.recalibr.γ=3 surp.overshoot -0.0206 -0.0244 V=129,139 <0.0001 robust.recalibr

Table F3: Comparison of Brier scores, two-sided paired Wilcoxon signed rank tests, robust
recalibration with γ ∈ {0.5, 1, 1.5, 2, 2.5, 3} vs benchmarks.
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(a) Artwork data only

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight -0.0395 -0.0050 V=1,368 0.2277 No difference

robust.recalibr.γ=0.5 meta.prob.weight -0.0038 -0.0070 V=1,535 0.6853 No difference

robust.recalibr.γ=0.5 min.pivot -0.0046 -0.0011 V=1,281 0.1045 No difference

robust.recalibr.γ=0.5 surp.overshoot -0.0162 -0.0010 V=1,413 0.3220 No difference

robust.recalibr.γ=1 know.weight -0.0302 -0.0039 V=1,275 0.0985 No difference

robust.recalibr.γ=1 meta.prob.weight 0.0054 -0.0005 V=1,710 0.6677 No difference

robust.recalibr.γ=1 min.pivot 0.0047 0.0070 V=1,645 0.9065 No difference

robust.recalibr.γ=1 surp.overshoot -0.0069 0.0036 V=1,480 0.5034 No difference

robust.recalibr.γ=1.5 know.weight -0.0170 -0.0119 V=1,203 0.0458 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight 0.0186 -0.0124 V=1,731 0.5961 No difference

robust.recalibr.γ=1.5 min.pivot 0.0178 0.0133 V=1,799 0.3919 No difference

robust.recalibr.γ=1.5 surp.overshoot 0.0062 -0.0010 V=1,718 0.6400 No difference

robust.recalibr.γ=2 know.weight -0.0019 -0.0289 V=1,387 0.2648 No difference

robust.recalibr.γ=2 meta.prob.weight 0.0337 -0.0051 V=1,845 0.2816 No difference

robust.recalibr.γ=2 min.pivot 0.0329 0.0198 V=1,928 0.1403 No difference

robust.recalibr.γ=2 surp.overshoot 0.0214 -0.0070 V=1,926 0.1428 No difference

robust.recalibr.γ=2.5 know.weight 0.0139 -0.0027 V=1,642 0.9179 No difference

robust.recalibr.γ=2.5 meta.prob.weight 0.0495 -0.0029 V=1,977 0.0873 No difference

robust.recalibr.γ=2.5 min.pivot 0.0487 0.0264 V=2,047 0.0408 min.pivot

robust.recalibr.γ=2.5 surp.overshoot 0.0372 -0.0096 V=2,048 0.0403 robust.recalibr

robust.recalibr.γ=3 know.weight 0.0296 0.0099 V=1,840 0.2924 No difference

robust.recalibr.γ=3 meta.prob.weight 0.0652 -0.0104 V=2,106 0.0199 robust.recalibr

robust.recalibr.γ=3 min.pivot 0.0645 0.0332 V=2,118 0.0170 min.pivot

robust.recalibr.γ=3 surp.overshoot 0.0529 0.0176 V=2,115 0.0177 surp.overshoot
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(b) NFL data only

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight -0.0005 0.0030 V=3,060 0.0661 No difference

robust.recalibr.γ=0.5 meta.prob.weight -0.0014 0.0000 V=2,550 0.9329 No difference

robust.recalibr.γ=0.5 min.pivot -0.0011 -0.0004 V=2,222 0.2983 No difference

robust.recalibr.γ=0.5 surp.overshoot 0.0083 0.0077 V=3,441 0.0016 No difference

robust.recalibr.γ=1 know.weight -0.0047 -0.0016 V=2,198 0.2616 No difference

robust.recalibr.γ=1 meta.prob.weight -0.0056 -0.0132 V=1,933 0.0420 robust.recalibr

robust.recalibr.γ=1 min.pivot -0.0053 -0.0110 V=1,970 0.0566 No difference

robust.recalibr.γ=1 surp.overshoot 0.0041 0.0003 V=2,673 0.6120 No difference

robust.recalibr.γ=1.5 know.weight -0.0037 -0.0105 V=1,981 0.0617 No difference

robust.recalibr.γ=1.5 meta.prob.weight -0.0046 -0.0253 V=2,015 0.0798 No difference

robust.recalibr.γ=1.5 min.pivot -0.0044 -0.0204 V=2,148 0.1955 No difference

robust.recalibr.γ=1.5 surp.overshoot 0.0050 -0.0062 V=2,445 0.7846 No difference

robust.recalibr.γ=2 know.weight 0.0004 -0.0168 V=2,173 0.2268 No difference

robust.recalibr.γ=2 meta.prob.weight -0.0004 -0.0402 V=2,210 0.2795 No difference

robust.recalibr.γ=2 min.pivot -0.0002 -0.0268 V=2,307 0.4546 No difference

robust.recalibr.γ=2 surp.overshoot 0.0092 -0.0119 V=2,472 0.8568 No difference

robust.recalibr.γ=2.5 know.weight 0.0066 -0.0218 V=2,319 0.4798 No difference

robust.recalibr.γ=2.5 meta.prob.weight 0.0057 -0.0511 V=2,332 0.5080 No difference

robust.recalibr.γ=2.5 min.pivot 0.0060 -0.0291 V=2,415 0.7065 No difference

robust.recalibr.γ=2.5 surp.overshoot 0.0153 -0.0158 V=2,518 0.9822 No difference

robust.recalibr.γ=3 know.weight 0.0139 -0.0250 V=2,454 0.8085 No difference

robust.recalibr.γ=3 meta.prob.weight 0.0130 -0.0558 V=2,454 0.8085 No difference

robust.recalibr.γ=3 min.pivot 0.0133 -0.0313 V=2,517 0.9794 No difference

robust.recalibr.γ=3 surp.overshoot 0.0227 -0.0191 V=2,586 0.8352 No difference
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(c) Science data only

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight 0.0005 0.0014 V=135,238 <0.0001 know.weight

robust.recalibr.γ=0.5 meta.prob.weight 0.0005 -0.0087 V=105,406 0.0577 No difference

robust.recalibr.γ=0.5 min.pivot -0.0084 -0.0024 V=55,092 <0.0001 robust.recalibr

robust.recalibr.γ=0.5 surp.overshoot 0.0017 0.0045 V=133,503 0.0003 surp.overshoot

robust.recalibr.γ=1 know.weight -0.0174 -0.0068 V=53,859 <0.0001 robust.recalibr

robust.recalibr.γ=1 meta.prob.weight -0.0175 -0.0272 V=57,205 <0.0001 robust.recalibr

robust.recalibr.γ=1 min.pivot -0.0264 -0.0166 V=39,850 <0.0001 robust.recalibr

robust.recalibr.γ=1 surp.overshoot -0.0163 -0.0058 V=73,182 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 know.weight -0.0269 -0.0162 V=43,809 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight -0.0270 -0.0389 V=47,981 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 min.pivot -0.0359 -0.0253 V=43,628 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 surp.overshoot -0.0258 -0.0123 V=55,148 <0.0001 robust.recalibr

robust.recalibr.γ=2 know.weight -0.0316 -0.0216 V=46,463 <0.0001 robust.recalibr

robust.recalibr.γ=2 meta.prob.weight -0.0317 -0.0481 V=48,503 <0.0001 robust.recalibr

robust.recalibr.γ=2 min.pivot -0.0406 -0.0327 V=46,822 <0.0001 robust.recalibr

robust.recalibr.γ=2 surp.overshoot -0.0305 -0.0192 V=54,264 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 know.weight -0.0334 -0.0244 V=49,251 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 meta.prob.weight -0.0335 -0.0557 V=50472 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 min.pivot -0.0424 -0.0378 V=49,365 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 surp.overshoot -0.0323 -0.0225 V=55,183 <0.0001 robust.recalibr

robust.recalibr.γ=3 know.weight -0.0336 -0.0278 V=51,837 <0.0001 robust.recalibr

robust.recalibr.γ=3 meta.prob.weight -0.0337 -0.0576 V=52,322 <0.0001 robust.recalibr

robust.recalibr.γ=3 min.pivot -0.0426 -0.0416 V=51,598 <0.0001 robust.recalibr

robust.recalibr.γ=3 surp.overshoot -0.0325 -0.0254 V=56,356 <0.0001 robust.recalibr
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(d) States data only

Method Benchmark Avg.diff Med.diff Test stat. p-value Signif. better?

robust.recalibr.γ=0.5 know.weight 0.0551 0.0463 V=1,246 <0.0001 know.weight

robust.recalibr.γ=0.5 meta.prob.weight 0.0337 0.0322 V=932 0.0045 meta.prob.weight

robust.recalibr.γ=0.5 min.pivot 0.0019 0.0008 V=798 0.1225 No difference

robust.recalibr.γ=0.5 surp.overshoot 0.0448 0.0210 V=1,167 <0.0001 surp.overshoot

robust.recalibr.γ=1 know.weight 0.0104 0.0039 V=911 0.0084 know.weight

robust.recalibr.γ=1 meta.prob.weight -0.0110 -0.0182 V=417 0.0337 robust.recalibr

robust.recalibr.γ=1 min.pivot -0.0429 -0.0537 V=44 <0.0001 robust.recalibr

robust.recalibr.γ=1 surp.overshoot 0.0001 0.0071 V=696 0.5756 No difference

robust.recalibr.γ=1.5 know.weight -0.0180 -0.0124 V=273 0.0004 robust.recalibr

robust.recalibr.γ=1.5 meta.prob.weight -0.0394 -0.0419 V=84 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 min.pivot -0.0712 -0.0868 V=46 <0.0001 robust.recalibr

robust.recalibr.γ=1.5 surp.overshoot -0.0283 -0.0132 V=318 0.0021 robust.recalibr

robust.recalibr.γ=2 know.weight -0.0356 -0.0272 V=138 <0.0001 robust.recalibr

robust.recalibr.γ=2 meta.prob.weight -0.0570 -0.0590 V=4 <0.0001 robust.recalibr

robust.recalibr.γ=2 min.pivot -0.0889 -0.1092 V=51 <0.0001 robust.recalibr

robust.recalibr.γ=2 surp.overshoot -0.0459 -0.0220 V=178 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 know.weight -0.0465 -0.0327 V=106 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 meta.prob.weight -0.0679 -0.0675 V=1 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 min.pivot -0.0998 -0.1152 V=52 <0.0001 robust.recalibr

robust.recalibr.γ=2.5 surp.overshoot -0.0569 -0.0295 V=146 <0.0001 robust.recalibr

robust.recalibr.γ=3 know.weight -0.0533 -0.0361 V=99 <0.0001 robust.recalibr

robust.recalibr.γ=3 meta.prob.weight -0.0748 -0.0740 V=7 <0.0001 robust.recalibr

robust.recalibr.γ=3 min.pivot -0.1066 -0.1174 V=58 <0.0001 robust.recalibr

robust.recalibr.γ=3 surp.overshoot -0.0637 -0.0351 V=138 <0.0001 robust.recalibr

Table F4: Comparison of Brier scores, two-sided paired Wilcoxon signed rank tests, robust
recalibration vs benchmarks in each data set.
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