
Incentives for self-extremized expert judgments to

alleviate the shared-information problem∗

Cem Peker †

Erasmus School of Economics, Erasmus University Rotterdam

September 2022

Abstract

Simple average of subjective forecasts is known to be effective in estimating un-

certain quantities. However, benefits of averaging could be limited when forecasters

have shared information, resulting in over-representation of the shared information in

average forecast. This paper proposes a simple incentive-based solution to the shared-

information problem. Experts are grouped with non-experts in forecasting crowds and

they are rewarded for the accuracy of crowd average instead of their individual accu-

racy. In equilibrium, experts anticipate the over-representation of shared information

and extremize their forecasts towards their private information to boost crowd accuracy.

The self-extremization in individual expert forecasts alleviates the shared-information

problem. Experimental evidence suggests that incentives for crowd accuracy could in-

duce self-extremization even in small crowds where winner-take-all contests (another

incentive-based solution) are not effective.
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1 Introduction1

Decision makers frequently require a reliable estimate/forecast of an uncertain quantity.2

Economists develop methods to nowcast or forecast economic indicators and make projec-3

tions, which are essential for policy making (Elliott & Timmermann, 2013). Investors strive4

to predict future prices of commodities and assets accurately to make successful investments5

and achieve positive returns. Businesses invest vast resources into estimating demand for6

their existing and future products. Sports betting and election forecasting also involve pre-7

dicting uncertain quantities (Stekler et al., 2010; Graefe et al., 2014).8

Expert opinion could be a source of information to estimate uncertain quantities. Com-9

bining multiple judgments typically produces accurate predictions (Armstrong, 2001). Ag-10

gregating judgments incorporates decentralized and dispersed information held by a diverse11

group of individuals into a single estimate (Davis-Stober et al., 2014). The ‘wisdom of12

crowds’ effect occurs even for very small crowds (Mannes et al., 2014).13

A decision maker who aims to utilize wisdom of crowds has to choose an aggregation14

method. Optimal aggregation depends on the composition of the forecasting crowd (Lam-15

berson & Page, 2012; Davis-Stober et al., 2015). Previous studies found simple averaging16

to be surprisingly effective and robust in a variety of estimation tasks (Genre et al., 2013;17

Clemen, 1989; Makridakis & Winkler, 1983; Mannes et al., 2012). When errors in individual18

judgments are statistically independent, simple averaging is effective in reducing errors in19

forecasting. Benefits of averaging could be limited when experts have shared information,20

which could result from an overlap in information sources (Gigone & Hastie, 1993; Chen et21

al., 2004). When best estimates of Bayesian experts are averaged, the shared information is22

over-represented in the aggregate prediction. As a result, the aggregate prediction exhibits23

the shared-information bias (Palley & Soll, 2019).24

Recent work proposed aggregation mechanisms to address the shared-information prob-25

lem. The pivoting method aims to recover the shared and private components of judg-26

ments and recombine them optimally (Palley & Soll, 2019). Knowledge-weighting proposes27
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a weighted combination of judgments (Palley & Satopää, 2022). The surprising overshoot28

(SO) algorithm picks a quantile from the empirical density of probability predictions (Peker,29

2022). Pivoting, knowledge-weighting and the SO algorithm rely on an augmented elicitation30

procedure where judges report their meta-predictions, i.e. a prediction on others’ judgments31

(Prelec et al., 2017; Martinie et al., 2020; Wilkening et al., 2021). Pivoting requires meta-32

predictions to identify shared information. Knowledge-weighting determines optimal weights33

based on the accuracy of meta-predictions. The SO algorithm infers the direction and size34

of the shared-information bias from the distribution of meta-predictions around the average35

prediction. Another line of work suggests weighting judgments according to judges’ exper-36

tise in similar estimation tasks to improve the aggregate prediction (Budescu & Chen, 2015;37

Mannes et al., 2014). Non-experts may rely more on shared information. Putting a lower38

weight on their judgments may reduce the undue influence of shared information in the39

crowd average. However, the shared-information bias persists even when non-experts are40

fully excluded because experts will also incorporate shared information in their predictions.41

Furthermore, such weighting methods are limited by the availability and reliability of past42

data.43

This paper presents a simple incentive-based approach for aggregating judgments under44

shared information. We consider a setup where there is an unknown quantity and a sample45

of judges are asked to report a point estimate as a prediction. All judges observe a shared46

signal from the quantity while a subset of judges, referred to as experts, observe an additional47

private signal. Previous work on judgment elicitation typically uses proper scoring rules to48

elicit individuals’ best estimates (Gneiting & Raftery, 2007). In contrast, we reward all49

individual predictions for the accuracy of the resulting crowd average. Under incentives50

for crowd accuracy, experts anticipate the shared-information problem and self-extremize51

towards their private signal to boost crowd accuracy. The self-extremization in individual52

expert judgments alleviates the shared-information bias in the average prediction. Unlike53

the alternative solutions discussed above, judges report a single point forecast only and no54
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past data is required to determine weights for a weighted average of predictions.55

We implement incentives for crowd accuracy in an experimental study to test if experts56

anticipate the shared-information problem and self-extremize in response. Subjects are asked57

to predict the number of heads in 100 flips of a biased coin. All subjects observe a common58

sequence of sample flips, which represent the shared signal. Some subjects are assigned to the59

‘expert’ role. These expert subjects observe an additional judge-specific sequence of sample60

flips, which represent their private signal. We construct forecasting crowds where each expert61

is grouped with multiple non-experts and rewarded for the accuracy of crowd average. The62

design makes the shared-information problem salient for experts as non-experts predictions63

are expected to be highly influenced by the shared signal. Evidence suggests that expert64

predictions are on average self-extremized under incentives for crowd accuracy.65

In presenting an incentive-based solution, we follow an approach similar to forecasting66

contests. In a winner-take-all contest of experts, an expert has an incentive to differentiate67

herself from others and avoid ties by adjusting her forecast towards her private information68

(Ottaviani & Sørensen, 2006; Lichtendahl Jr & Winkler, 2007; Pfeifer et al., 2014). As69

a result, the shared-information problem could become less severe (Lichtendahl Jr et al.,70

2013). However, the strength of incentives for self-extremization in a winner-take-all contest71

depends on the crowd size. In smaller crowds of experts, possibility of a tie (and hence,72

having to split the prize in the case of win) is lower. Then, an expert would have weaker73

incentives to deviate from her best guess, making the contest less effective in correcting74

for the shared-information bias. We implement a winner-take-all contest of experts as an75

experimental condition in our studies. Results indicate that experts do not significantly self-76

extremize under winner-take-all incentives in small crowds of experts. In contrast, incentives77

for crowd accuracy can elicit self-extremized predictions from a small number of experts in78

a large crowd.79

Incentives for crowd accuracy encourage judges to consider their peers’ judgments, and80

thus they may resemble beauty contest and guessing games (Camerer et al., 2004; Nagel,81
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1995). However, there are two important differences. Firstly, under incentives for crowd82

accuracy, rewards depend on the objective realization of an unknown quantity. So, the83

prediction task involves more than just anticipating others’ judgments. Secondly, guessing84

games typically consider large samples where a single judge’s report becomes negligible. In-85

centives for crowd accuracy consider finite samples in which a judge’s prediction can influence86

the crowd average, which motivates self-extremization to improve accuracy.87

The rest of this paper is organized as follows: Section 2 introduces the formal frame-88

work and describes the shared-information problem. Section 3 develops incentives for self-89

extremization and establishes theoretical results. Section 4 presents experimental evidence.90

Section 5 provides a discussion of our findings and concludes.91

2 The framework92

2.1 Basics93

The formal framework is similar to the specification of linear aggregation problem in94

Palley & Soll (2019). Let X be a random variable, which follows a known cumulative density95

F (X|θ) with unknown mean θ and a known finite variance. There are N > 1 risk-neutral96

Bayesian judges. Let x ∈ R be the ex-post realization of X. There is a decision maker who97

aims to elicit and aggregate the experts’ judgments to estimate θ.98

Judges share a common prior belief π0(θ) on θ, where µ0 and σ2
0 are prior expectation99

and variance respectively. All judges observe the same common signal s1, which is given by100

the average of m1 independent observations of X. The sample of judges consist of K ≤ N101

experts N −K laypeople, where p = K/N represents the proportion of experts. Laypeople102

observe the common signal only. Experts both observe the common signal and receive a103

judge-specific private signal ti, which is the average of ℓ independent observations of X.104

Without loss of generality, let judges {1, 2, . . . , K} be the experts. The special case K = N105

corresponds to the symmetric information structure widely studied in the literature (Kim et106
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al., 2001; Ottaviani & Sørensen, 2006; Lichtendahl Jr et al., 2013). The information structure107

and the parameters {K,N} are common knowledge to the judges.108

The information aggregation problem is linear if the posterior expectation of θ, given

F (X|θ), is a linear combination of the prior expectation µ0 and the signals {µ0, s1, t1, t2, . . . , tK}

Palley & Soll (2019). In a linear aggregation problem,

E[θ|π0, s1, t1, t2, . . . , tK ] =

m0µ0 +m1s1 + ℓ
K∑
i=1

ti

m0 +m1 + ℓK

where E[θ|π0, s1, t1, t2, . . . , tK ] is referred to as the global posterior expectation (GPE). The109

GPE is the optimal aggregate forecast given the information provided by the common prior110

and the independent signals (Frongillo et al., 2015). Following Palley & Soll (2019), this111

paper considers X such that the information aggregation problem is linear.1 In a linear112

aggregation problem, the prior mean µ0 can be considered as representing m0 observations113

of independent realizations of X. Let m ≡ m0 +m1 and s ≡ (m0µ0 +m1s1)/m. The shared114

signal s is a composite signal that represents the shared information of judges, consisting of115

the common prior and the common signal.116

Using the simplified notation, the GPE can be written as follows:

E[θ|s, t1, t2, . . . , tN ] =
m

m+Kℓ
s+

ℓ

m+Kℓ

K∑
i=1

ti (1)

Each judge i updates her belief on θ after observing her signal (s, ti) following Bayes’

rule. It is common knowledge that judges are Bayesian. Let µi be the posterior expectation

of judge i on θ. In a linear aggregation problem, we have

µi =


(1− ω)s+ ωti for i ∈ {1, 2, . . . , K}

s for i ∈ {K + 1, K + 2, . . . , N}
(2)

1See the online companion of Palley & Soll (2019) for examples of linear aggregation problems.
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where ω = ℓ/(m + ℓ) is an expert’s weight on the private signal. If judge i is a layperson,117

her posterior expectation is completely determined by the shared signal. An expert judge118

i’s posterior expectation incorporates both the shared and private signals. The parameters119

(m, ℓ) are common knowledge to all judges.120

2.2 The shared-information bias121

Suppose each judge reports a point estimate xi on X. Decision maker builds a crowd

estimate by taking a simple average of individual reports. Let x̄ = 1
N

N∑
i=1

xi be the crowd

average. Consider the case where all judges report their true posterior expectations, i.e.

xi = µi for all i ∈ {1, 2, . . . , N}. Let x̄L = s and x̄E = 1
K

K∑
i=1

(1−ω)s+ωti denote the average

prediction of laypeople and experts respectively. Then, the crowd average can be written as

x̄ = (1− p)x̄L + px̄E

Following Palley & Soll (2019), we define the shared-information bias as E[x̄ − X|s, θ],

which can be written as follows:

E[x̄−X|s, θ] = (1− p)E[x̄L −X|s, θ] + pE[x̄E −X|s, θ]

= (1− p)(s− θ) + p(1− ω)((1− ω)s+ ωθ − θ)

= (1− pω)(s− θ) (3)

The size of the shared-information bias depends on the proportion p of experts in the crowd,122

experts’ weight ω on their private signal and the absolute difference between s and θ. Note123

that the bias exists even for p = 1. Each expert incorporates the shared signal in her124

prediction, resulting in an over-representation of shared information in average prediction125

even in crowds consisting of experts only. The bias does not disappear in large crowds for the126

same reason. The following section presents our solution to the shared-information problem.127
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3 Incentives for self-extremized expert judgments128

In eliciting quantitative judgments, judges are typically rewarded for ex-post accuracy to129

motivate them to report their best estimates. Section 2.2 established that, when the judges130

report their best guesses on x, the crowd average exhibits the shared-information bias. This131

section develops incentives for crowd accuracy, where judges are rewarded for accuracy of the132

crowd average instead of their individual prediction. Then, expert’s reports will not reflect133

their individual best estimates. Instead, we will show that experts put a higher relative134

weight on their private information. Such expert reports correct for the shared-information135

bias in the resulting average prediction.136

The decision maker asks each judge i to report xi simultaneously and aggregates estimates

using x̄. Let C(x̄, x) be the crowd score of the aggregate estimate x̄, where C is a scoring

function such that

x = argmax
y∈R

C(y, x) (4)

θ = argmax
y∈R

E[C(y,X)] (5)

Intuitively, C is a measure of the ex-post accuracy of an estimate and the expected score

is maximized at θ. All judges receive the same reward, determined according to C(x̄, x).

Thus, the elicitation procedure motivates judges to report in a way that boosts the crowd

accuracy. Let x̄−i be the crowd average of all judges excluding i. The crowd average x̄ can

be written as follows:

x̄ =
N − 1

N
x̄−i +

1

N
xi

Then, judge i’s expected payoff maximization problem can be expressed as follows:

max
xi∈R

E

[
C

(
N − 1

N
x̄−i +

1

N
xi, X

)]
(6)
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Judges participate in a simultaneous reporting game where each judge i sets xi to maximize137

the expected crowd score. Let x∗
i denote the optimal report of judge i.138

Since we consider linear aggregation problems, we restrict our attention to reporting139

strategies of the form fE(s, ti) = α1s + α2ti and fL(s) = βs where fE and fL represent140

expert and layperson strategies respectively. The parameters {α1, α2, β} denote the weights141

associated with reported predictions. Expert predictions can differ due to private signal ti142

while laypeople report the same prediction given s. The case β = 1 corresponds to laypeople143

reporting their posterior expectation.144

Definition. An expert prediction is self-extremized if α2/(α1 + α2) > ω.145

Recall that ω represents the weight on private signal in experts’ individual best guess.146

Self-extremization is defined as the relative weight on private signal in the reported predic-147

tions being higher than ω. Note that we can have both α1 > (1−ω) and α2 > ω since α1 and148

α2 need not sum to unity. Thus, we describe self-extremization in terms of the normalized149

weight on private signal.150

The theorem below presents an equilibrium of the simultaneous reporting game:151

Theorem. Under incentives for crowd accuracy, there exists infinitely many Bayesian Nash

Equilibria such that

xi =


α1s+ α2ti for i ∈ {1, 2, . . . , K}

βs for i ∈ {K + 1, K + 2, . . . , N}

where {α1, α2, β} satisfy

Kα1 + (N −K)β =
Nm

m+Kℓ
(7)

α2 =
Nℓ

m+Kℓ
(8)

α1, α2 ∈ R, 0 < β ≤ 1 (9)

9



and experts self-extremize. For K > 1, self-extremization in expert judgments occurs for152

β = 0 as well.153

Proof of the theorem is included in Appendix A. Conditions in 7 and 8 ensure that the

resulting crowd average x̄ does not exhibit the shared information bias. We have

x̄ =
1

N

{
K∑
i=1

α1s+ α2ti +
K∑
i=1

ti +
N∑

i=K+1

βs

}
= α1

K

N
s+ α2

1

N

K∑
i=1

ti + β
N −K

N
s

=
m

m+Kℓ
s+

ℓ

m+Kℓ

K∑
i=1

ti

In equilibrium, the crowd average reflects the GPE given in equation 1. Experts and laypeo-154

ple follow reporting strategies such that the shared and private signal are weighted optimally155

not in their individual predictions but in x̄ instead. The decision maker does not need to156

select a subset of judges or determine weights for a weighted average. Simple averaging157

produces the optimal aggregate judgment.158

The equilibria with 0 < β < 1 represent situations where laypeople also coordinate on159

putting a lower weight on shared information. Experts self-extremize and the extent of their160

self-extremization depends on β. For β = 0, experts self-extremize for K ≥ 2 even though161

laypeople put zero weight on the shared signal. The case K = 1 is the exception where single162

expert’s optimal relative weight on ti corresponds to ω in her posterior. Thus, the expert163

prediction is not self-extremized according to the definition above. However, the expert puts164

a higher absolute weight on both signals. Finally, we have the following equilibrium:165

Corollary. In the Bayesian Nash equilibrium with β = 1, laypeople simply report their166

posterior and experts self-extremize such that x̄ does not exhibit the shared-information bias.167

The theorem characterizes type-symmetric equilibria in pure strategies with linear re-168

porting. There exists many coordination equilibria where judges of the same type follow169

different strategies. Thus, only a subgroup of experts may self-extremize. Furthermore, the170

theorem characterizes equilibria with β ∈ [0, 1]. In a strategy with β < 0, laypeople put a171
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negative weight on shared signal. Sufficient negative weighting from laypeople could correct172

the shared-information bias in x̄ without self-extremization from experts. We may consider173

the equilibrium in the corollary (β = 1) most relevant, mainly because laypeople simply174

report their posterior. The theorem assumes common knowledge of information structure175

and composition of the forecasting crowd (i.e. values of K and N). Experts and laypeople176

coordinate on setting {α1, α2, β} given their knowledge of {ℓ,m,K,N}. In practice, only177

experts may have the knowledge that would allow them to anticipate the shared-information178

problem. If experts know the information structure and {ℓ,m,K,N}, we could still observe179

the equilibrium outcome with β = 1, corresponding self-extremization in expert predictions,180

and no shared-information bias in x̄.181

Lichtendahl Jr et al. (2013) establish a limiting equilibrium in a Normal model where182

winner-take-all contests elicit self-extremized expert predictions in large crowds of experts.183

Note that for K = N and N → ∞, the optimal weight on private signals is 1 for any184

ℓ > 0 and we have α2 → 1 in the equilibrium above. Lichtendahl Jr et al. (2013) also185

show that, depending on the parameters, the limiting weight on the private signal is 1 either186

in a symmetric pure strategy equilibrium or in a mixed strategy equilibrium where experts187

provide a noisy report of their private signal only. These equilibria achieve optimal weighting188

of signals for N → ∞. However, note that the equilibria in winner-take-all contests are189

limiting: the shared-information bias is alleviated only in large crowds. Incentives for crowd190

accuracy achieve optimal aggregation for any finite N and K ≤ N as well as the limiting191

case.192

Since experts are the only source of private information, optimal weighting of private193

signals in x̄ rely on expert predictions. Incentives for crowd accuracy would not work unless194

the experts anticipate the shared-information problem in x̄ and self-extremize accordingly.195

Section 4 presents preliminary evidence from two experimental studies. Subjects are asked196

to predict the number of heads in 100 flips of a biased coin. Prior to making a prediction,197

subjects in the expert role observe shared and private signals, which consist of independent198
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sequences of sample flips. We implement incentives for crowd accuracy to investigate if199

self-extremization occurs.200

4 Experimental evidence201

Section 3 established that when incentivized for crowd accuracy, Bayesian experts self-202

extremize towards their private information to correct for the shared-information bias. The203

result depends on experts’ ability to anticipate the shared-information problem. In two204

experimental studies, we test if subjects are capable of such reasoning. Section 4.1 provides205

an overview of our experimental studies. Sections 4.2 and 4.3 provide a more detailed account206

of the designs, procedures and results.207

4.1 Motivation and Overview208

We run two controlled experiments to test if judges self-extremize under incentives for209

crowd accuracy.2 In both studies the experimental design is similar to studies 1 and 2 in210

Palley & Soll (2019). We recruit participants for an online experiment, in which subjects211

complete 10 prediction tasks. In each task, there is a two-sided coin with an unknown bias.212

Subjects are asked to predict the number of heads in 100 flips of the coin. Before making213

a prediction, subjects observe a shared signal consisting of 10 flips of the coin. In addition,214

some subjects receive an additional private signal which consists of another 10 flips from the215

same coin. After the experiment is completed we randomly pick one of the coins and flip it216

100 times (virtually). Rewards are determined based on the outcome of these flips.217

Study 1 is designed to test if experts self-extremize when the shared information problem218

highly salient. Subjects are selected in forecasting crowds of sizes 5, 10 and 30. Each219

forecasting crowd of size N consists of one human subject and N − 1 computer-generated220

(CG) agents. The CG agents predict based on the shared signal only. For example, if there221

2Supplemental material includes the IRB approval for both studies granted by ERIM Internal Review
Board, Section Experiments. The approval is registered under nr 2020/11/18-65868ape.
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are 7 heads out of 10 flips in the shared signal, all CG agents predict 70 heads in 100 flips.222

Each human subject is in the expert role (observes a private signal) and knows that the other223

crowd members are CG agents who predict based on the shared signal only. Each subject224

is rewarded according to the accuracy of her crowd’s average forecast. The inclusion of CG225

agents makes the shared-information problem recognizable for subjects. Thus, Study 1 offers226

preliminary evidence on whether experts can anticipate the necessity of self-extremization.227

We implement a control group where subjects in expert role are rewarded for their individual228

accuracy and test if subjects self-extremize in the treatment conditions. Furthermore, we229

investigate if the crowd size has an impact on the rate of self-extremization. In small crowds,230

subjects may not perceive the severity of the shared-information problem and self-extremize231

less often. In larger crowds with many non-experts, the shared-information problem is more232

salient. However, an individual expert’s report has a smaller effect on the crowd average,233

which may diminish incentives to self-extremize. The treatment conditions will show the234

extent of self-extremization in crowds of size 5, 10 and 30.235

Study 2 implements a more realistic crowd accuracy condition where forecasting crowds236

are comprised of humans only. Subjects are assigned to expert and layperson roles specified237

in Section 2.1. Each expert is selected in a forecasting crowd where other members are238

laypeople peers. Unlike Study 1, experts do not have exact information on other crowd239

members’ predictions. However, they could still anticipate that the other crowd members240

will heavily rely on the shared information. In addition, Study 2 includes a contest condition241

in which subjects in expert role participate in a winner-take-all contest. We compare the242

effectiveness of incentives for crowd accuracy and winner-take-all contests in inducing self-243

extremization.244

4.2 Study 1 - Do experts self-extremize?245

Study 1 investigates self-extremization in a setup where the shared-information problem246

is easily recognizable for subjects. We also vary the crowd size to see if it has an impact on247
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the effectiveness of incentives for crowd accuracy.248

4.2.1 Design and Procedures249

Task. Subjects are asked to predict the number of heads in 100 flips of a biased two-250

sided coin. There are multiple such coins and for each coin, probability of heads (the bias)251

is within [0.25, 0.75] and drawn uniformly. The bias is unknown to subjects. Before submit-252

ting a prediction, subjects observe two sequences of 10 independent sample flips from the253

corresponding coin. The first sequence is common to all subjects and represents the shared254

signal. The second sequence is subject-specific and represents a subject’s private signal.255

Then, subjects report a prediction by moving a slider on a scale 0 to 100. There are in256

total 40 such coins. Each subjects participates on 10 prediction tasks and hence, makes a257

prediction for 10 coins.258

The prediction task represents a linear aggregation problem with a binomial variable259

(Palley & Soll, 2019). The unknown bias in each coin corresponds to θ. Subjects predict260

the realization of X, which is a binomial random variable that represents the number of261

heads in 100 flips of the coin. Shared and private signals are 10 independent flips each,262

where each flip is a realization from a Bernoulli process. Since m = ℓ = 10, the signals are263

equally informative and the Bayesian weight ω on the private signal in a judge’s posterior264

expectation is 0.5. Unlike in the theoretical framework, subjects’ predictions are bounded265

within [0, 100]. The effect of censoring on reports will be discussed in Section 4.2.2.266

Design. We construct a between-subjects design where two factors are manipulated267

to generate experimental conditions. The primary factor of interest is the incentivization268

scheme. In individual accuracy conditions, subjects are rewarded for the accuracy of their269

individual reports. In crowd accuracy conditions, we select each subject into a forecasting270

crowd where other members of the crowd are computer generated (CG) agents. In any given271

prediction task, the CG agents’ predictions are completely determined by the shared signal.272

To illustrate, suppose the shared signal has 7 heads out of 10 flips. Then, all CG agents273
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predict 70 heads in 100 new flips of this coin. Each forecasting crowd of size N includes274

N−1 such CG agents and 1 human subject. Subjects are informed about the composition of275

their crowd and the rule CG crowd members follow in their predictions. A subjects’ payoff276

is determined by the average of all predictions (her report and N − 1 CG predictions) in277

her crowd. We set three levels of crowd size, given by N ∈ {5, 10, 30}. Thus, there are in278

total four experimental conditions, which are denoted by {Individual, Crowd-5CG, Crowd-279

10CG, Crowd-30CG}. Figure 1 provides an example from the experimental interface in the280

Crowd-10CG condition.281

Figure 1: An example prediction task in the Crowd-10 condition. Initially, the slider starts
at 0 and the text box that shows the current value is empty. The interface requires subjects
to move (and release) the slider at least once or type a value directly.

As seen in Figure 1, subjects know that the predictions of other members of their crowd282

simply reflect the shared signal. This design makes the shared-information problem easily283

recognizable for subjects and allows us to test if subjects self-extremize in such a setting.284

Subjects. Subjects are recruited from the online platform Prolific. We restrict the285
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subject pool to students (at any level) who were US residents at the time of participation.286

The screening aims to recruit subjects who are more likely to understand the instructions and287

limit reporting errors. A total of 321 subjects completed the online experiment implemented288

via Qualtrics. Subjects are randomly assigned to one of the experimental conditions and289

spent on average 5 to 6 minutes to complete the experiment. Table B1 in Appendix B290

provides further information on the participants. For each coin used in the prediction tasks,291

we pre-generate the shared and private signals prior to the experiment. Each subject in a292

given condition observes a preset collection of shared and private signals. We use the same293

presets in each condition to improve the comparability of predictions across the experimental294

conditions.295

Rewards. Subjects receive a participation fee of £1 for completing the experiment. In296

addition, they may earn a bonus based on their responses. After the experiment, we randomly297

pick a coin in each experimental condition and generate 100 flips. In the individual accuracy298

condition, subject i’s bonus is calculated according to the bonus function B given as299

B(xi, x) =


3− 1

27
(xi − x)2 for |xi − x| ≤ 9

0 for |xi − x| > 9

(10)

where xi is subject i’s individual prediction and x is the realized number of heads in the 100300

flips. The bonus function has a unique maximum at xi = x. In the individual condition, B301

incentivizes subjects to report an estimate that minimizes the expected squared error, which302

corresponds to their posterior expectation on θ. Bonuses are positive for absolute forecasting303

errors smaller than 9. For example, if 38 heads appeared in 100 flips of the chosen coin and304

a subject predicted 33, her bonus is 3 − (1/27)52 = £2.07. The maximum bonus is £3 and305

bonuses never fall below 0.306

Calculation of bonuses is similar in the crowd accuracy conditions, except that a subject’s307

bonus is determined by accuracy of the crowd average. We calculate x̄i, which is the average308

of all predictions (subject i’s prediction and N − 1 CG predictions) in subject i’s crowd309
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rounded to the closest integer. Then, subject i’s bonus is determined according to B(x̄i, x).310

Note that under incentives for crowd accuracy, B satisfies the conditions given in equations311

4 and 5 for the scoring function C. The function B(x̄i, x) has a unique maximum at x̄i = x312

and the expected bonus E[B(x̄i, x)] is maximized at x̄i = θ where the expected squared error313

is minimized. Subject i is incentivized to report xi such that the resulting x̄i reflects the314

GPE on θ, as in the theorem in Section 3. Figure C1 in Appendix C shows how bonuses are315

communicated to the subjects.316

Procedure. The online experiment is published on Prolific. Upon starting the exper-317

iment, subjects are selected into one of the experimental conditions. Then, subjects are318

presented with the instructions which explain the prediction task and rewards in the corre-319

sponding experimental condition. Explanation of the prediction task is identical across the320

conditions. Instructions are followed by a multiple choice quiz question about rewards. The321

quiz tests subjects’ understanding of incentives for crowd or individual accuracy depending322

on the experimental condition and provides feedback to the subject before the tasks begin.3323

After the quiz, subjects are presented with the prediction tasks in a randomized order. Sub-324

jects complete the experiment by answering a few questions about their background and325

their experience in the experiment. Rewards are subsequently calculated and distributed326

on Prolific. Subjects’ reports are retrieved from Qualtrics and matched with the data on327

demographics available through Prolific.328

4.2.2 Results329

We are interested in testing if incentives for crowd accuracy lead to self-extremization.330

The experimental setup allows a precise definition of self-extremization. Consider a subject331

in the prediction task given in Figure 1. The shared signal suggests 30 heads in 100 new332

flips while the private signal suggests 60 heads. Since both signals are equally informative, a333

3Supplemental material provides all experimental data, instructions, quiz screens and the R Scripts (R
Core Team, 2020; Wickham et al., 2022; Wickham, 2016, 2007; Leifeld, 2013) for reproducing all the empirical
results.
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subject’s posterior best guess is 45. This subject’s prediction is identified as self-extremized if334

it is higher than 45. If the reported prediction is lower than 45 instead, it would be considered335

as anti-extremized. Heterogeneity across individuals and reporting errors may lead to anti-336

extremized predictions as well as self-extremization in all treatments. However, if incentives337

for crowd accuracy motivate self-extremization, we should observe a higher percentage of338

extremized predictions in Crowd-5CG, Crowd-10CG and Crowd-30CG and similar rates of339

anti-extremization across all experimental conditions. Figure 2 shows the self-extremization340

rate in each experimental condition for various values of absolute difference between subjects’341

shared and private signals. Error bars indicate bootstrap standard errors.342
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Figure 2: Self-extremization rate as measured by percentage of self-extremized predictions.
Error bars show bootstrap standard errors (1000 boostrap samples).

Figure 2 indicates significantly higher self-extremization rate in crowd accuracy condi-343

tions, even when the shared and private signals are close and an expert would expect a small344

shared-information bias in the crowd average. Subjects anticipate the shared-information345

problem and adjust their prediction away from the shared signal. Figure 3 depicts the346

frequency of predictions that are equal to the posterior, extremized and anti-extremized.347

Figure 3 shows a substantially higher extremization rate in crowd accuracy conditions while348
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the frequency of anti-extremized predictions is similar across all treatments. Subjects are349

more likely to adjust their predictions away from their posterior under incentives for crowd350

accuracy. Figure 3 suggests that the adjustments are in the direction of self-extremization.351
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Figure 3: Frequency distribution of extremized and anti-extremized predictions in Study 1.
Error bars show bootstrap standard errors (1000 boostrap samples).

Another variable of interest is the extent of self-extremization. Consider again the ex-352

ample in Figure 1 where the shared and private signals are 30 and 60 respectively and the353

posterior is 45. Suppose subject i reported xi = 50. We refer to 50 − 45 = 5 as the ex-354

tremizing adjustment. In this example, the extremizing adjustment would be negative if the355

subject’s report were less than 45. Positive and negative extremizing adjustments correspond356

to extremized and anti-exremized predictions respectively. We investigate if the extremizing357

adjustments of subjects who self-extremized are as extensive as predicted by the theory. For358

example, consider a subject in the Crowd-5CG who observed 6 and 7 heads in shared and359

private flips respectively. This subject’s posterior is 65 but her optimal report (based on the360

theorem) is 85. So, the optimal extremizing adjustment is 20. Note that predictions in our361

task are bounded in [0, 100] and the optimal prediction need not fall in that interval. For362

example, the optimal prediction in Figure 1 is 180 while subjects can self-extremize up to363

19



100 only. In such tasks, we consider the maximum possible extremization as the optimal364

since extremizing as much as possible is expected to improve accuracy. In the case of Figure365

1, the induced posterior is 45 and we consider 100 − 45 = 55 as the optimal extremizing366

adjustment, which occurs if the subject reports 100.367

For an analysis on the extent of self-extremization, we calculate extremizing adjustments368

as a percentage of the optimal. If the optimal adjustment is 20, an extremizing adjustment369

of 10 would be 50% of the optimal. Figure 4 depicts the frequency of percentage extremizing370

adjustments. Black bars represent predictions that are not self-extremized, i.e. extremizing371

adjustment is 0 or negative. Color-coded segments show self-extremized predictions where372

each color represent a range of extremizing adjustments as a percentage of the corresponding373

optimal adjustment.374
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Figure 4: Extremizing adjustments as percentage of the corresponding optimal extremizing
adjustment. Black bars represent predictions that are not self-extremized. Color-coded
segments show the number of instances where the extremizing adjustment in ‘percentage of
the optimal’ terms falls within the indicated interval.

In all three conditions, most extremizing adjustments fall short of the optimal. There375

are cases of excessive self-extremization as well. However, note that censoring in predictions376

affect the measurement of excessive self-extremization, in particular in Crowd-10CG and377
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Crowd-30CG. The optimal adjustment typically corresponds to reporting 0 or 100. Thus,378

extremizing adjustment cannot be higher than the optimal adjustment itself. Censoring379

could also be an explanation for slightly lower self-extremization rate in the Crowd-30CG380

condition in Figure 2. Subjects may reason that they cannot extremize enough to make381

a sizeable difference in accuracy, which would diminish the motivation to self-extremize.382

Figure C3 in Appendix C depicts the average extremizing adjustments at the subject level.383

Average adjustments are typically small in quantity and negative for some subjects. We384

observe that few subjects consistently self-extremize at the level predicted by the type-385

symmetric equilibria in the Theorem. Evidence suggests substantial heterogeneity in expert386

behavior under incentives for collective accuracy. Section 5 provides further discussion on387

the practical limitations implied by these findings.388

Table 1 below shows the estimates of the linear regression models where extremizing389

adjustment (including both positive and negative observations) is the dependent variable390

and the experimental condition is the independent variable of interest. The coefficients of391

Crowd-5CG, Crowd-10CG and Crowd-30CG measure the estimated difference in extremizing392

adjustments relative to the Individual condition. Model specifications (1) and (2) use the393

whole sample of subjects. In (3) and (4), subjects who gave an incorrect answer in the pre-394

experimental quiz or found instructions unclear are excluded to construct a filtered sample.395

Specifications (2) and (4) also include various controls. The variables ‘US citizen?’ and396

‘Female?’ are binary indicators for US citizenship and gender respectively while ‘Age’ is a397

numeric variable. In all models, standard errors are clustered at subject level.398

Table 1 shows significantly positive effects for all crowd accuracy conditions. Subjects399

extremize towards their private signal under incentives for crowd accuracy while the esti-400

mated extremizing adjustment is not different from zero in the individual accuracy condition401

(intercept term). Based on Table 1 and Figure 2 we can conclude that incentives for crowd402

accuracy induce self-extremization. Figure 4 showed that most extremizing adjustments are403

smaller than the optimal adjustment in the corresponding prediction task. Nevertheless,404
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Dep. var.: Extremizing adjustment
(whole sample) (filtered sample)
(1) (2) (3) (4)

(Intercept) −0.28 2.69 −0.28 2.93
(0.35) (2.53) (0.38) (2.66)

Crowd-5CG 4.51∗∗∗ 4.11∗∗∗ 4.68∗∗∗ 4.42∗∗∗

(1.25) (1.18) (1.32) (1.26)
Crowd-10CG 6.48∗∗∗ 6.54∗∗∗ 7.22∗∗∗ 7.41∗∗∗

(1.69) (1.74) (1.84) (1.89)
Crowd-30CG 3.76∗∗∗ 3.90∗∗∗ 4.59∗∗∗ 4.84∗∗∗

(1.37) (1.41) (1.49) (1.54)
Female? −2.29∗ −2.33∗

(1.23) (1.32)
Age −0.05 −0.05

(0.10) (0.10)
US citizen? −0.39 −0.71

(1.12) (1.21)
R2 0.02 0.03 0.03 0.03
Adj. R2 0.02 0.02 0.02 0.03
Num. obs. 2601 2570 2362 2331
RMSE 16.41 16.42 16.19 16.19
N Clusters 321 317 292 288
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 1: Regression output. Standard errors are clustered at individual level.

results suggest that incentives for crowd accuracy could alleviate the shared-information405

problem.406

The censoring in predictions may affect the estimates in Table 1. Subjects cannot self-407

extremize beyond 0 or 100, which could cause a downward bias in extremizing adjustments.408

Note that the estimated extremizing adjustment is significantly higher in crowd accuracy409

conditions than Individual despite the potential negative effect of censoring. This result can410

be interpreted as a strong indicator of self-extremization on average.411

Section 4.1 argued that self-extremization may occur more often in crowds of moderate412

size where experts would anticipate a serious shared-information problem while still being413

able to have a non-negligible effect on the crowd average through self-extremization. Fig-414

ure 2 suggested that subjects self-extremized more often in Crowd-10CG condition, but the415

bootstrap standard errors suggest no major difference. The estimated extremizing adjust-416

ment is highest for Crowd-10CG in Table 1. Pairwise tests of coefficients show no significant417
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differences across the crowd accuracy conditions (t = 0.97, p = 0.34 in Crowd-10CG vs418

Crowd-5CG; t = 1.28, p = 0.20 in Crowd-10CG vs Crowd-30CG under model (1)). As dis-419

cussed above, censoring may affect the estimated extremizing adjustments in particular for420

Crowd-10CG and Crowd-30CG.421

The results of Study 1 indicate that incentives for crowd accuracy could elicit self-422

extremized expert predictions when the shared-information problem is highly salient. Study423

2 further investigates incentives for crowd accuracy and provides a comparative analysis by424

implementing a winner-take-all contest as well.425

4.3 Study 2 - Crowd accuracy vs winner-take-all contest426

Study 2 uses the same prediction task as Study 1 but differs in two ways. Firstly, Study427

2 implements incentives for crowd accuracy in a more realistic setting where all subjects428

including non-experts are humans. Secondly, Study 2 implements a winner-take-all contest429

of experts as another experimental condition. As discussed before, previous literature showed430

that subjects in a winner-take-all contest have incentives to self-extremize. We will compare431

incentives for crowd accuracy with winner-take-all contests in eliciting self-extremized expert432

predictions.433

4.3.1 Design and Procedures434

Task. The tasks in Study 2 are identical to those in Study 1. We use the same 40 coins435

and pre-generated shared and private signals to set up 40 prediction tasks. As in Study 1,436

each subject completes 10 prediction tasks.437

Design. We follow a between-subjects design and manipulate incentivization scheme to438

generate three experimental conditions. The Individual condition is identical to the exper-439

imental condition of the same name in Study 1. We implement Individual in Study 2 as a440

benchmark. The experimental conditions of interest are Crowd-10 and Contest-10, which441

we explain below.442
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The Crowd-10 condition in Study 2 implements incentives for crowd accuracy in crowds443

of size 10. Unlike Study 1, forecasting crowds consists of human subjects only. Each subject444

is randomly assigned to the expert or layperson role, which they maintain in all tasks. An445

expert subject observes both the shared signal and a private signal while a layperson subject446

observes the shared signal only. Each forecasting crowd consists of 1 expert and 9 laypeople.447

The expert subjects are rewarded for the accuracy of their crowd average. In contrast, the448

layperson subjects are rewarded for their individual accuracy. This approach implements the449

equilibrum with β = 1, where laypeople report their posteriors and experts self-extremize.450

Rewarding layperson subjects for individual accuracy keeps the instructions simpler for both451

types of subjects. Experts are informed about the composition of their crowd. Unlike Study452

1, experts do not know the exact predictions of the laypeople in the crowd. However, they453

know that the layperson subjects are incentivized to report their posteriors. Experts could454

still anticipate that laypeople predictions will reflect the shared information. Thus, we expect455

to observe self-extremization in expert predictions.456

In Contest-10 condition, each subject is in the expert role and participates in a winner-457

take-all contest with 9 other subjects. We split 40 prediction tasks in 4 “coin sets” of 10458

tasks each. Experts in the Contest-10 condition complete one of the coin sets. Then, each459

expert in each set is selected into a group of 10 contestants, which consists exclusively of460

experts who completed the same set. After the experiment, we pick a coin randomly from461

each coin set and flip it 100 times to obtain the number of heads. An expert wins a bonus if462

her prediction on the chosen coin is the most accurate in her group of contestants. In case463

of a tie, bonus reward is split equally among the winners. We will provide more information464

on rewards below. The formation of coin sets and the assignment of experts to these sets465

are random. Similarly, experts are selected into contestant groups randomly. The tasks are466

organized in sets to ensure that subjects can be clustered in contestant groups of 10 for a467

randomly a chosen coin.468

The Crowd-10 and Contest-10 conditions represent two incentive-based solutions to the469
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decision maker’s problem. Crowd-10 relies on experts’ ability to anticipate the shared-470

information bias and self-extremize to improve the accuracy of crowd average. Contest-10 is471

an implementation of a winner-take-all contest. An expert would like to incorporate shared472

information and report her best estimate to maximize her chances of winning the prize.473

However, the prize is split in the case of a tie. The distribution of predictions is likely to474

have a higher density around the shared information. An expert can reduce the possibility475

of a tie by extremizing away from the shared information. But, self-extremization could476

increase expected error and result in a lower chance of winning the prize. This trade-off477

determines the extent of self-extremization that maximizes the expected prize (Pfeifer et478

al., 2014). Ties are less likely in small samples, so the experts have an incentive to simply479

maximize their accuracy. Thus, we may not observe self-extremization in Contest-10. In480

contrast, we expect self-extremization in Crowd-10 based on the theorem and findings in481

Study 1.482

Note that including laypeople in a winner-take-all contest does not make experts’ incen-483

tives to self-extremize stronger. An expert’s posterior best guess differs from a laypersons’484

as long as her private signal is different from the shared signal. So, experts who report their485

posterior do not expect a tie with laypeople predictions. Other experts who may have the486

same posterior creates an incentive to self-extremize. Contest-10 represents a symmetric487

setup where winner-take-all incentives motivate self-extremization, except that the number488

of contestants is small.489

Subjects. As in Study 1, we recruit subjects from Prolific and screen for students and490

US residents. In total, 295 subjects completed the experiment. Two subjects are excluded491

because their country of residence was different from the US. More information on subjects492

can be found in Table B2 included in Appendix B. In the Crowd-10 condition, the number493

of subjects that were assigned to the expert and layperson role are 81 and 47 respectively.494

The assignment of roles is set to be random until a sufficient number of layperson data is495

collected to construct crowds of 10 for each coin. As in Study 1, we are interested in experts’496
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self-extremization. So, once we gathered sufficient layperson data, the incoming subjects are497

assigned to the expert role only.498

Rewards. Participants receive £1 for completing the experiment. Bonuses in the In-499

dividual condition are calculated the same way as it is done in Study 1. Bonuses in the500

Crowd-10 condition are also similar to Study 1 and determined using the bonus function501

B in equation 10. The layperson subject i’s bonus is B(xi, x) where xi is her prediction502

and x is the realized number of heads in 100 flips. An expert i’s bonus depends on the503

accuracy of her crowd’s average x̄i and is given by B(x̄i, x). In the Contest-10 condition, we504

calculate the absolute prediction error for each subject. For example, if x = 60 and subject505

i predicted 58, her absolute error is 2. A subject wins a bonus of £18 if she has the lowest506

absolute error in her contestant group. The prize is split evenly if 2 or more subjects are tied507

in being winners. Subjects who do not achieve the lowest absolute error in their group do508

not receive a bonus. The winner’s prize is determined such that the expected bonus for an509

optimally self-extremizing expert (according to the theorem) in the Crowd-10 condition is510

equivalent to the expected bonus of a contestant in the Contest-10 condition. The resulting511

average bonuses for an expert in the Crowd-10 and Contest-10 conditions are £1.27 and512

£1.78 respectively. The ex-post discrepancy suggests that experts might have insufficiently513

self-extremized for the corresponding levels of the shared-information bias in a crowd with514

9 laypeople and 1 expert only. Note that the total prize in a contest is fixed, so the average515

bonus in Contest-10 does not depend on experts’ self-extremization.516

Procedure. Similar to Study 1, the online experiment is made available on Prolific. In-517

coming subjects are randomly selected into one of the three experimental conditions. Since518

the analysis is focused on expert judgment, the data collection is aimed at collecting ap-519

proximately equal number of expert data across the experimental conditions. Recall that520

in the Crowd-10 condition, subjects are assigned to expert and layperson roles. In order to521

obtain more expert judgments in Crowd-10, we continued collecting expert data for Crowd-522

10 condition after Individual and Contest-10 conditions are stopped. Similar to Study 1,523
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subjects see the instructions and complete a quiz. Explanation of the tasks is the same for524

the Individual and Contest-10 conditions as well as the expert role in Crowd-10. Layperson525

subjects in Crowd-10 observe the shared signal only. Thus, the instructions and the task526

interface do not include private signals. After the quiz, subjects complete prediction tasks in527

a randomized order and finish the experiment by completing a short survey (same as Study528

1) on their background information and clarity of instructions. Rewards are calculated and529

distributed on Prolific.530

4.3.2 Results531

We analyze experts’ predictions in each experimental condition. Figure C2 in Appendix532

C suggests that layperson subjects’ predictions typically reflect the shared signal as in the533

equilibrium with β = 1. Figure 5 is analogous to Figure 3 and presents the frequency of534

extremized and anti-extremied predictions in Study 2.535
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Figure 5: Frequency distribution of extremized and anti-extremized predictions in Study 2.
Error bars show bootstrap standard errors (1000 boostrap samples).

Subjects deviate from their posterior more often in Crowd-10 and Contest-10 conditions.536

Percentage of extremized and anti-extremized predictions are similar in the Contest-10 condi-537
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tion. Subjects are almost as likely to put a higher weight on the shared signal and exacerbate538

the shared-information problem. In contrast, predictions that differ from the posterior are539

extremized more often in the Crowd-10 condition. Note that, unlike Figure 3, we also observe540

a higher frequency of anti-extremized predictions in the crowd accuracy condition. Recall541

that Study 1 made the shared-information problem highly salient. Subjects knew the exact542

predictions of computer-generated non-experts. The forecasting crowds in Crowd-10 consist543

of human subjects only. Expert subjects may find non-expert reports less predictable or544

incentives for crowd accuracy may lead to confusion for some individuals. Section 5 provides545

a discussion on the potential limitations of incentives for crowd accuracy.546

Table 2 presents the regression estimates where extremizing adjustment is the dependent547

variable. As in Table 1, models (1) and (2) use the whole sample while (3) and (4) filters548

the sample based on the quiz responses and self-reported understanding of the experiment.549

The controls are the same as before.550

Dep. var.: Extremizing adjustment
(whole sample) (filtered sample)
(1) (2) (3) (4)

(Intercept) 0.44 4.90∗∗∗ 0.29 5.19∗∗∗

(0.53) (1.59) (0.46) (1.85)
Crowd-10 3.36∗∗ 3.44∗∗ 3.96∗∗∗ 4.16∗∗∗

(1.41) (1.46) (1.50) (1.57)
Contest-10 −0.21 −0.49 −0.10 −0.22

(0.68) (0.65) (0.69) (0.70)
Female? −0.97 −1.01

(0.93) (1.07)
Age −0.09∗ −0.12∗∗

(0.05) (0.05)
US citizen? −1.94 −2.03

(1.18) (1.41)
R2 0.02 0.02 0.02 0.03
Adj. R2 0.01 0.02 0.02 0.03
Num. obs. 1996 1978 1668 1668
RMSE 13.09 13.00 13.21 13.17
N Clusters 246 244 206 206
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1

Table 2: Regression output. Standard errors are clustered at individual level.
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Table 2 suggests a significantly higher level of extremizing adjustment in Crowd-10 than551

Individual. In contrast, there are no differences between the Contest-10 and Individual552

conditions in terms of extremizing adjustments. A pairwise comparison of Crowd-10 and553

Contest-10 also indicates a difference (t = 2.61, p = 0.009 in Crowd-10 vs Contest-10 under554

model (1)). Figure 5 showed that winner-take-all incentives in Contest-10 lead experts to555

deviate from their posteriors. However, extremizing adjustments are in the negative direction556

almost as often as the positive (self-extremizing) direction. As a result, estimated extremizing557

adjustment is not higher than the level observed in the Individual condition. Figure C4 in558

Appendix C depicts the distribution of experts’ average extremizing adjustments in Study 2.559

Similar to Study 1, few experts systematically self-extremize across all tasks. Even though560

Table 2 indicates significant self-extremization on average, we should note the substantial561

heterogeneity in individual behavior where only a few subjects consistently self-extremize.562

The results of Study 2 suggests that winner-take-all contests may not be effective if the563

forecasting crowd includes a small number of experts. Increasing the crowd size could help564

only if the decision maker can recruit more experts. Incentives for crowd accuracy could565

elicit self-extremized expert predictions in small crowds as well.566

5 Discussion567

In extracting the wisdom of crowds, simple averaging of expert judgments has an intuitive568

appeal. The decision maker need not worry about identifying better experts, which is not569

a trivial task. Furthermore, evidence shows that simple averaging is hard to beat in many570

applications, implying a robustness across various information structures and application571

domains. However, simple average exhibits the shared-information bias when experts have572

shared information (Palley & Soll, 2019). In such cases, a decision maker would prefer experts573

to extremize their judgments away from the shared information. We propose incentivizing574

predictions for crowd accuracy as a means to elicit such judgments. The theory predicts575
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that Bayesian experts would anticipate the shared-information problem and self-extremize576

to improve the accuracy of the crowd average. In two experimental studies we investigated577

if such self-extremization occurs in practice.578

Study 1 essentially tested if experts follow the best response in the theorem given579

layperson predictions. Subjects are selected in forecasting crowds that consist of computer-580

generated non-experts with predictable predictions. Table 1 suggests that incentives for581

crowd accuracy generates self-extremization on average. However, we also observe substan-582

tial heterogeneity at the individual level. Most extremizing adjustments are less than optimal583

and only a small number of subjects self-extremized extensively in all tasks.584

Study 2 tested incentives for crowd accuracy where experts are grouped with human non-585

expert subjects instead of computer-generated agents. Study 2 also implemented a winner-586

take-all contest as an alternative incentive-based solution to elicit self-extremized expert587

judgments. Lichtendahl Jr et al. (2013) derived the limiting equilibria in a winner-take-all588

contest where experts self-extremize. The resulting average forecast is more accurate than589

the average of non-extremized forecasts. Pfeifer et al. (2014) illustrates why predicting the590

expert behavior in a finite sample of experts is challenging. The pure strategy equilibrium591

of self-extremization may not exist. Intuitively, motivation to self-extremize stems from592

experts’ trade-off between reporting her best prediction and standing out from the others593

to avoid ties. In small samples, an expert’s incentive to differentiate her forecast is weaker594

as a tie is much less likely. Table 2 indicates significant self-extremization under incentives595

for crowd accuracy but not in a winner-take-all contest. Figure 5 shows that subjects in the596

contest condition adjusted their forecast towards shared information almost as often as they597

self-extremized. Similar to Study 1, expert subjects’ predictions under incentives for crowd598

accuracy exhibit considerable heterogeneity.599

The influence of an individual prediction on the crowd average becomes smaller as the600

crowd size increases. Study 1 did not find significant differences in average extremizing601

adjustment across the crowd accuracy conditions. However, as discussed in Section 4.2.2,602
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self-extremization in Crowd-10CG and Crowd-30CG may be affected by censoring in the603

experimental prediction task. Offering higher rewards for per unit reduction in the ex-post604

error of crowd average could make incentives to self-extremize stronger, in particular in large605

samples where a single judge’s unit adjustment has a small impact on accuracy.606

The coordination equilibrium in the theorem assumes common knowledge of the signal607

generation process and the composition of the forecasting crowd. The equilibrium outcome608

with β = 1 can still occur when non-experts lack such knowledge and simply report their pos-609

terior as long as experts coordinate on optimal self-extremization. The crowd accuracy con-610

ditions in our experimental studies circumvent the coordination problem by including a single611

expert only and focus on identifying if experts recognize the necessity of self-extremization.612

Study 1 simplifies the strategic considerations by using CG agents as laypeople. Study 2613

incentivizes human laypeople subjects to report their posterior, which induces the equilib-614

rium with β = 1. Figure 5 suggests that the presence of human laypeople leads to slightly615

higher rates of expert anti-extremization as well. We may expect further difficulties in co-616

ordination equilibria when there are multiple experts. Furthermore, the theorem considers617

only the type-symmetric equilibria while experimental evidence indicates substantial hetero-618

geneity both at the prediction and individual levels. Non-symmetric equilibria could also be619

relevant for understanding expert behavior under incentives for crowd accuracy.620

Incentives for crowd accuracy rely on Bayesian experts’ ability to anticipate the shared-621

information problem. Previous work found mixed results in whether people have the correct622

intuition on the shared information and the resulting correlation between judgments (Soll,623

1999; Budescu & Yu, 2007; Yaniv et al., 2009). In our experimental studies, we grouped each624

expert subject exclusively with non-experts to make shared-information problem salient.625

Subjects had exact knowledge of the signal generation process and the number of laypeo-626

ple in their crowd. Nevertheless, we observe considerable heterogeneity in expert behavior627

under incentives for crowd accuracy. The extent of extremization in self-extremized predic-628

tions is often less than optimal. Incentives for crowd accuracy may not induce sufficient629
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self-extremization to fully correct for the shared-information bias. However, our experimen-630

tal evidence suggests higher rates of self-extremization, which could alleviate the shared-631

information bias in the crowd average.632

Presence of public knowledge could be the source of a salient shared-information problem633

in real-life forecasting tasks (Chen et al., 2004). Private information would reflect expert634

knowledge not accessible to laypeople. In mixed forecasting crowds, experts can anticipate635

that laypeople predictions rely exclusively on public knowledge. Subsequent empirical work636

may implement incentives for crowd accuracy in such prediction tasks and investigate if637

experts can coordinate on extremizing away from the shared information.638
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Appendices721

A Proof of the theorem722

Consider an expert judge i ≤ K. Suppose all other experts and laypeople follow

fE(s, tj) = α1s+ α2tj and fL(s) = βs respectively. Then,

E[x̄−i|s, ti] =
(K − 1)α1 + (N −K)β

N − 1
s+ α2

1

N − 1
E

 ∑
j ̸=i,j∈{1,2,...,K}

tj

∣∣∣∣∣∣ s, ti


E[X|s, ti] =
m

m+Kℓ
s+

ℓ

m+Kℓ

ti + E

 ∑
j ̸=i,j∈{1,2,...,K}

tj

∣∣∣∣∣∣ s, ti


The optimal report x∗
i satisfies

N − 1

N
E[x̄−i|s, ti] +

1

N
x∗
i = E[X|s, ti] (11)

with expert i’s expectations given above. Plugging in we get

(K − 1)α1 + (N −K)β

N
s+

1

N
α2E

 ∑
j ̸=i,j∈{1,2,...,K}

tj

∣∣∣∣∣∣ s, ti
+

1

N
x∗
i =

m

m+Kℓ
s+

ℓ

m+Kℓ

ti + E

 ∑
j ̸=i,j∈{1,2,...,K}

tj

∣∣∣∣∣∣ s, ti


Replace Kα1 + (N −K)β = Nm/(m +Kℓ) and α2/N = m/(m +Kℓ) and solve for x∗
i to

obtain

x∗
i = fE(s, ti) = α1s+ α2ti
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Thus, an expert judge i’s best response is fE(s, ti). Now, suppose judge i is a layperson

instead, i.e. i ∈ {K + 1, K + 2, . . . , N}. Then,

E[x̄−i|s] =
α1K + (N −K − 1)β

N − 1
s+ α2

1

N − 1
E

[
K∑
j=1

tj

∣∣∣∣∣ s
]

E[X|s] = m

m+Kℓ
s+

ℓ

m+Kℓ
E

[
K∑
j=1

tj

∣∣∣∣∣ s
]

The optimal report x∗
i satisfies the following condition:

N − 1

N
E[x̄−i|s] +

1

N
x∗
i = E[X|s]

which is the same condition as equation 11 except that a laypersons posterior expectations

depend on s only. Plugging in the expectations we get:

α1K + (N −K − 1)β

N
s+ α2

1

N
E

[
K∑
j=1

tj

∣∣∣∣∣ s
]
+

1

N
x∗
i =

m

m+Kℓ
s+

ℓ

m+Kℓ
E

[
K∑
j=1

tj

∣∣∣∣∣ s
]

Replace α1K + (N −K)β = Nm/(m +Kℓ) and α2/N = m/(m +Kℓ) and solve for x∗
i to

obtain

x∗
i = fL(s) = βs

Thus, a layperson judge i’s best response is fL(s). To summarize, x∗
i = fE(s, ti) = α1s+α2ti

if i ∈ {1, 2, . . . , K} and x∗
i = fL(s) = βs if i ∈ {K + 1, K + 2, . . . , N}. Therefore, experts

and laypeople following fE(s, t) and fL(s) respectively is an equilibrium. Furthermore, we
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have

α2

α1 + α2

=
Nℓ

1
K
(Nm− β(N −K)m)− β(N −K)ℓ+Nℓ

=
NKℓ

[N − β(N −K)](m+Kℓ)

Then we have

α2

α1 + α2

> ω

NKℓ

[N − β(N −K)](m+Kℓ)
>

ℓ

m+ ℓ

N

N − β(N −K)
>

m+Kℓ

K(m+ ℓ)
(12)

Observe that for β ∈ (0, 1],

N

N − β(N −K)
> 1 >

m+Kℓ

K(m+ ℓ)

for all N > 1 and K ≤ N . Thus, experts self-extremize in equilibrium. Consider the case723

β = 0. Then, equation 12 is satisfied for K > 1, which implies experts self-extremize. For724

K = 1, the single expert’s normalized weight is given by Nℓ/N(m+ ℓ) = ω.725
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B Summary statistics726

Experimental Condition

Individual Crowd-5CG Crowd-10CG Crowd-30CG

Number of subjects 80 81 80 80

Female/Male 43/37 33/48 38/42 47/33

Average age 24.8 22.8 24 23.8

US/Non-US citizen 69/11 81/0 80/0 80/0

Average duration 5 min 14 sec 6 min 5 min 32 sec 5 min 13 sec

Average bonus £1.04 £1.15 £1 £0.89

Number of subjects, filtered

sample

73 75 72 72

Table B1: Summary statistics, Study 1. The filtered sample excludes subjects who picked a
wrong answer in the quiz (see the ‘Procedure’ in the main text) or picked ‘Unclear’ or ‘Very
Unclear’ when asked for the clarity of the instructions.

Experimental Condition

Individual Crowd-10 Contest-10

Number of subjects 84 128 81

Experts/Laypeople - 81/47 -

Female/Male 36/48 33/48 38/42

Average age 23.4 24.6 23

US/Non-US citizen 72/12 103/25 65/16

Average duration 5 min 21 sec 5 min 35 sec 5 min 1 sec

Average bonus (Exp./Layp. in Crowd-10) £1.26 £1.27/£0.49 £1.78

Number of subjects, filtered sample 69 113 64

Table B2: Summary statistics, Study 2. The filtered sample is constructed the same way as
in Table B1
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C Additional figures on design and results727

Figure C1: How bonuses are displayed in the crowd accuracy conditions.
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Figure C2: The distribution of layperson predictions in Study 2.
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Figure C3: Average extremizing adjustments, Study 1
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Figure C4: Average extremizing adjustments, Study 2
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