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Abstract

How should we combine disagreeing expert judgments on the likelihood of an event?

A common solution is simple averaging, which allows independent individual errors to

cancel out. However, judgments can be correlated due to an overlap in their informa-

tion, resulting in a miscalibration in the simple average. Optimal weights for weighted

averaging are typically unknown and require past data to estimate reliably. This paper

proposes an algorithm to aggregate probabilistic judgments under shared information.

Experts are asked to report a prediction and a meta-prediction. The latter is an es-

timate of the average of other individuals’ predictions. In a Bayesian setup, I show

that if average prediction is a consistent estimator, the percentage of predictions and

meta-predictions that exceed the average prediction should be the same. An “overshoot

surprise” occurs when the two measures differ. The Surprising Overshoot algorithm

uses the information revealed in an overshoot surprise to correct for miscalibration in

the average prediction. Experimental evidence suggests that the algorithm performs

well in moderate to large samples and in aggregation problems where individuals dis-

agree in their predictions.
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1 Introduction1

Decision making is often a problem of assessing the chances of uncertain events. Scien-2

tists make probabilistic projections on natural phenomena, such as the occurrence of a major3

earthquake or the effects of anthropogenic climate change. Strategists assess the likelihood4

of important geopolitical events. Investors form judgments on the risks involved in invest-5

ments. Economists and policy makers need probabilistic predictions on policy outcomes and6

macroeconomic indicators. Individual judgments may be subject to biases such as optimism,7

overconfidence, anchoring on an initial estimate, focusing too much on easily available in-8

formation, neglecting an event’s base rate, and many more (Kahneman and Tversky, 1973;9

Tversky and Kahneman, 1974; Kahneman et al., 1982). Combining multiple judgments to10

leverage ‘the wisdom of crowds’ is known to be an effective approach in improving accuracy11

(Surowiecki, 2004; Makridakis and Winkler, 1983).12

The use of collective wisdom involves choosing an aggregation method that combines13

individual predictions into an aggregate prediction (Armstrong, 2001; Clemen, 1989; Palan14

et al., 2019). Previous work found simple averaging to be surprisingly effective, typically15

outperforming more sophisticated aggregation methods and showing robustness across vari-16

ous settings (Makridakis and Winkler, 1983; Mannes et al., 2012; Winkler et al., 2019; Genre17

et al., 2013). Intuitively, simple averaging allows statistically independent individual errors18

to cancel, leading to a more accurate prediction (Larrick and Soll, 2006). However, in some19

prediction tasks, forecasters may have common information through shared expertise, past20

realizations, knowledge of the same academic works, etc. (Chen et al., 2004). Then, indi-21

vidual errors may become correlated, resulting in a bias in the equally weighted average of22

predictions (Palley and Soll, 2019). In theory, the decision maker in a given task can select23

and weight judgments such that the errors perfectly cancel out (Clemen and Winkler, 1986;24

Mannes et al., 2014; Budescu and Chen, 2015). However, optimal weights depend on how25

experts’ prediction errors are correlated and are typically unknown to the decision maker.26

Some existing methods aim to estimate appropriate weights using past data from similar27
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tasks (Budescu and Chen, 2015; Mannes et al., 2014). The effectiveness of this approach28

is limited by the availability and reliability of past data. Another line of work proposed29

competitive elicitation mechanisms (Ottaviani and Sørensen, 2006; Lichtendahl Jr and Win-30

kler, 2007), which may improve the calibration of the average forecast when forecasters have31

common information (Lichtendahl Jr et al., 2013; Pfeifer et al., 2014; Pfeifer, 2016). Such32

competitive mechanisms are sensitive to strategic considerations of forecasters (Peeters et al.,33

2021).34

This paper develops the Surprising Overshoot (SO) algorithm to aggregate judgments on35

the likelihood of an event. I consider a setup where experts form their judgments by combin-36

ing shared and private information on an unknown probability. When shared information37

differs from the true probability, experts are likely to err in the same direction, resulting38

in a miscalibrated average prediction. The SO algorithm relies on an augmented elicitation39

proposed in recent work (Prelec, 2004; Prelec et al., 2017; Palley and Soll, 2019; Palley and40

Satopää, 2022; Wilkening et al., 2021): Experts report a prediction of the probability as well41

as an estimate of the average of others’ predictions, which is referred to as a meta-prediction.42

I show that when the average prediction is a consistent estimator, the percentage of predic-43

tions and meta-predictions that overshoot the average prediction should be the same. An44

overshoot surprise occurs when the two measures differ, which indicates that the average45

prediction is an inconsistent estimator. The SO estimator uses the information in the size46

and direction of the overshoot surprise to account for the shared-information problem. It47

does not require the use of past data.48

I test the SO algorithm using experimental data from two sources. Palley and Soll (2019)49

conducted an experimental study where subjects are asked to predict the number of heads50

in 100 flips of a biased coin. Their experiment implements shared and private signals as51

sample flips from the biased coin. The second source is Wilkening et al. (2021), who con-52

ducted two experimental studies. The first experiment replicates the earlier study by Prelec53

et al. (2017) which asked subjects true/false questions about the capital cities of U.S. states.54
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However, unlike Prelec et al. (2017) they also ask subjects to report probabilistic predictions55

and meta-predictions, which allows an implementation of the SO algorithm. In the second56

experiment, Wilkening et al. (2021) generate 500 basic science statements and ask subjects57

to report probabilistic predictions and meta-predictions on the likelihood that a given state-58

ment is true. Results suggest that the SO algorithm outperforms simple benchmarks such as59

unweighted averaging and median prediction. I also compare the SO algorithm to alterna-60

tive solutions for aggregating probabilistic judgments, which elicit similar information from61

individuals (Palley and Soll, 2019; Martinie et al., 2020; Palley and Satopää, 2022; Wilkening62

et al., 2021). The SO algorithm compares favorably to alternative aggregation mechanisms63

in prediction tasks where individual predictions are highly dispersed. Experimental evidence64

suggests that the SO algorithm is especially effective in extracting the collective wisdom65

from strongly disagreeing probabilistic judgments in moderate to large samples of experts.66

This paper contributes to the literature of judgment aggregation mechanisms that utilize67

meta-beliefs to improve prediction accuracy. The Surprisingly Popular (SP) algorithm picks68

an answer to a multiple choice question based on predicted and realized endorsement rates69

of alternative choices (Prelec et al., 2017). The Surprisingly Confident (SC) algorithm de-70

termines weights that leverage more informed judgments (Wilkening et al., 2021). The SP71

and SC algorithms aim to find the correct answer to a binary or multiple-choice question72

while the SO algorithm produces a probabilistic estimate on a binary event.73

Recent work developed aggregation algorithms for probabilistic judgments as well. Pivot-74

ing uses meta-predictions to recover and recombine shared and private information optimally75

(Palley and Soll, 2019). Knowledge-weighting constructs a weighted average such that the76

accuracy of weighted crowd’s aggregate meta-prediction is maximized (Palley and Satopää,77

2022). Meta-probability weighting also attaches weights to individual predictions where the78

absolute difference between an individual’s prediction and meta-prediction is considered as79

an indicator of expertise (Martinie et al., 2020). In testing the performance of the SO al-80

gorithm, pivoting, knowledge-weighting and meta-probability weighting are considered as81
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benchmarks. As mentioned above, the SO algorithm performs especially well when individ-82

ual judgments are highly dispersed. In practice, such problems are likely to be the most83

challenging ones, where expert judgments disagree substantially and it is not clear how84

judgments should be aggregated for maximum accuracy.85

The rest of this paper is organized as follows: Section 2 introduces the formal framework.86

Section 3 develops the SO algorithm and establishes the theoretical properties of the SO87

estimator. Section 4 introduces the data sets and benchmarks we consider in testing the88

SO algorithm empirically. The same section also presents some preliminary evidence on89

how overshoot surprises relate to the inaccuracy in average prediction. Section 5 presents90

experimental evidence testing the SO algorithm. Section 6 provides a discussion on the91

effectiveness of the SO algorithm. Section 7 concludes.92

2 The Framework93

The formal framework follows the definition of a linear aggregation problem in Palley and94

Soll (2019) and Palley and Satopää (2022) with the quantity of interest being a probability.95

The notation will also be similar to Palley and Soll (2019). Let Y ∈ {0, 1} be a random96

variable that represents the occurrence of an event where y ∈ {0, 1} denotes the value in97

a given realization. Also let θ = P (Y = 1) be the unknown objective probability of the98

outcome 1, representing the occurrence of the event. A decision maker (DM) would like to99

estimate θ. The DM elicits judgments from a sample of N ≥ 2 risk-neutral agents to develop100

an estimator, where N → ∞ represents the whole population.101

Agents share a common prior belief over θ where µ0 represents the common prior ex-102

pectation. All agents observe a common signal, given by the average of m1 independent103

realizations of Y . A subset K ≤ N of agents are experts who receive an additional inde-104

pendent signal. Without loss of generality, let agents i ∈ {1, 2, . . . , K} be the experts. An105

expert’s private signal ti is the average of ℓ agent-specific independent realizations of Y . In106
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the analysis below, we consider the case where K = N , i.e. all agents are experts who ob-107

serve a private signal as well as the common signal. Appendix B presents the same analysis108

for the case of K < N and shows that the same results are applicable.109

Let µ0 represent m0 independent observations of Y . Also let m ≡ m0 + m1 and s ≡

(m0µ0 + m1s1)/m. The shared signal s represents a combination of the prior expectation

and the common signal. Each agent i follows a belief updating according to Bayes’ rule.

Posterior expectation E[θ|s, ti] is given by

E[θ|s, ti] = (1− ω)s+ ωti (1)

where ω = ℓ/(m+ ℓ) denotes the Bayesian weight that represents the informativeness of the110

private signal ti relative to the shared signal s 1. The signal structure and {m, ℓ} are common111

knowledge to all agents. Agents know that the posterior expectation of any agent i with112

private signal ti is given by Equation 1. The parameters {m, ℓ} and signals {s, t1, t2, . . . , tN}113

are unknown to the DM.114

Suppose the DM considers the simple average of agents’ predictions as an estimator for

θ. Let xi be agent i’s reported prediction on θ. Suppose all agents report their best guesses,

i.e. xi = E[θ|s, ti]. Then the average prediction is given by

x̄N =
1

N

N∑
i=1

xi = (1− ω)s+ ω
1

N

N∑
i=1

ti.

Note that lim
N→∞

x̄N = x̄ = (1 − ω)s + ωθ ̸= θ if s ̸= θ, i.e. average prediction is not a115

consistent estimator of θ unless the shared information is perfectly accurate (Palley and116

Soll, 2019). Increasing the sample size does not alleviate the shared-information problem117

1For an example model with linear posterior expectation, let Beta(m0µ0,m0(1 − µ0)) be the common

prior. Common and private signals are the average of m1 and ℓ realizations from the Bernoulli process with

probability θ, respectively. Then, the posterior belief of an agent i on θ follows Beta(ms + ℓti,m(1 − s) +

ℓ(1− ti)) with E[θ|s, ti] = (1− ω)s+ ωti where ω = ℓ/(m+ ℓ)
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because s is incorporated in x̄N by each additional prediction. Shared information causes118

a correlation between predictions and leads to a persistent error in x̄N . Section 3 develops119

the Surprising Overshoot algorithm, which constructs an estimator that accounts for the120

shared-information problem.121

3 The Surprising Overshoot algorithm122

The Surprising Overshoot algorithm relies on an augmented elicitation procedure and123

the information revealed by the distribution of agents’ reports to construct an estimator.124

Section 3.1 introduces the elicitation procedure. Sections 3.2 and 3.3 elaborates on the re-125

lationship between agents’ equilibrium reports and the resulting average prediction. Section126

3.4 develops the SO estimator.127

3.1 Belief elicitation128

The DM simultaneously and separately asks each agent i to submit two reports. In the129

first, the agent is asked to make a prediction xi ∈ [0, 1] on θ. In the second, the agent reports130

a meta-prediction zi ∈ [0, 1], which is an estimate of the average prediction of agents j ∈131

{1, 2, . . . , N}\{i}, denoted by x̄−i =
1

N−1

∑
j ̸=i

xj. Agents’ reports are incentivized by a strictly132

proper scoring rule (Gneiting and Raftery, 2007). Let πxi = Sx(xi, y) and πzi = Sz(zi, x̄−i) be133

the ex-post payoffs of an agent i from the prediction and meta-prediction where Sx and Sz are134

strictly proper scoring rules satisfying θ = argmax
u∈R

Sx(u, Y ) and x̄−i = argmax
u∈R

Sz(u, x̄−i).135

Agent i’s total payoff is given by πi = πxi + πzi.136

An agent i’s report is truthful if (xi, zi) = (E[θ|s, ti], E[x̄−i|s, ti]), i.e. agent i reports her137

posterior expectations on θ and x̄−i as prediction and meta-prediction respectively. Truthful138

reporting represents the situation where reports are truthful for all i ∈ {1, 2, . . . , N}.139

Theorem 1. Truthful reporting is a Bayesian Nash equilibrium in the simultaneous reporting140

game.141
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Proofs of all theorems and lemmas are included in Appendix A. Intuitively, Theorem 1

follows from the use of proper scoring rules. Agents are incentivized to report their best

estimates on the unknown probability and the average of others’ predictions. In equilibrium,

we have xi = E[θ|s, ti] = (1 − ω)s + ωti for all i ∈ {1, 2, . . . , N}. Then, agent i’s equilib-

rium meta-prediction is given by E[x̄−i|s, ti] = (1− ω)s + ω 1
N−1

∑
j ̸=i

E[tj|s, ti]. Observe that

E[tj|s, ti] = E[E[tj|θ]|s, ti] = E[θ|s, ti], i.e. agent i’s expectation on another agent’s signal

is her expectation on θ, which is equal to the truthful prediction. Thus, the equilibrium

prediction and meta-prediction of an agent i are given by:

xi = (1− ω)s+ ωti (2)

zi = (1− ω)s+ ωxi (3)

In the remainder of this section, I assume truthful reporting and hence, each agent i’s142

reported predictions and meta-predictions are given by Equations 2 and 3 respectively.143

3.2 Overshoot rates in predictions and meta-predictions144

A prediction or meta-prediction is said to overshoot the average prediction x̄N if it exceeds145

x̄N . For any arbitrary agent i, there are two overshoot indicators. For example, if xi > x̄N >146

zi, agent i’s prediction xi overshoots the average prediction while the meta-prediction zi does147

not overshoot.148

Lemma 1 (Overshoot in prediction). An agent i’s prediction xi overshoots x̄N if and149

only if her private signal ti overshoots the average signal t̄ =
N∑
k=1

tk. For N → ∞, we have150

xi > x̄ ⇐⇒ ti > θ where x̄ = lim
N→∞

x̄N is the population average of predictions.151

Lemma 2 (Overshoot in meta-prediction). An agent i’s meta-prediction zi overshoots152

x̄N if and only if her prediction xi overshoots the average signal t̄ =
N∑
k=1

tk. For N → ∞, we153

have zi > x̄ ⇐⇒ xi > θ where x̄ = lim
N→∞

x̄N is the population average of predictions.154
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Lemmas 1 and 2 suggest a pattern of predictions as N → ∞. According to Lemma 1, an

agent i’s prediction xi overshoots x̄ if and only if ti > θ. However, for meta-prediction zi to

overshoot x̄, we must have xi = (1−ω)s+ωti > θ. Thus, we do not necessarily have zi > x̄i

whenever xi > x̄ is satisfied. Consider the following measures computed using predictions

and meta-predictions:

px = lim
N→∞

1

N

N∑
i=1

1(xi > x̄)

pz = lim
N→∞

1

N

N∑
i=1

1(zi > x̄)

The measures px and pz represent the population proportion of predictions and meta-155

predictions that overshoot the population average x̄. I refer to px and pz as the overshoot156

rate in predictions and meta-predictions respectively. From Lemma 2, we can infer that pz157

also corresponds the population proportion of predictions that overshoot θ.158

3.3 Overshoot surprise as an indicator of the inconsistency in the159

average prediction160

Overshoot rates in predictions and meta-predictions provide an indicator for a miscali-161

bration in the average prediction x̄N . Theorem 2 establishes a result for the case where x̄N162

is a consistent estimator.163

Theorem 2. Overshoot rates satisfy px = pz when x̄N is a consistent estimator of θ164

Theorem 2 describes a situation where there is no shared information problem in the165

average prediction. This corresponds to the special case of s = θ. Then, x̄ = θ and it follows166

from Lemma 2 that an agent’s prediction and meta-prediction are always on the same side167

of x̄, which implies px = pz.168

What if s ̸= θ and x̄N is an inconsistent estimator? Then we have x̄ ̸= θ and there could169

be instances where an agent’s prediction and meta-prediction falls on different sides of x̄.170
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Figure 1 below shows one such example:171

Figure 1: An example case where an agent’s meta-prediction zi overshoots x̄ while prediction
xi undershoots. The dashed lines show how xi,zi and x̄ are determined given {s, ti, θ} from
Equations 2, 3 and x̄ = (1− ω)s+ ωθ.

In the example case, x̄N is an inconsistent estimator of θ because s > θ leads to x̄ > θ.172

Note that we also have θ < xi < zi. Intuitively, prediction xi overestimates θ because s > θ.173

Meta-prediction zi is the combination of agent i’s best estimate on the average signal (which174

converges to θ in the limit) and s. Since xi overestimates θ, by Lemma 2 meta-prediction zi175

overshoots x̄. However, following Lemma 1, xi still undershoots x̄ because ti < θ. Therefore,176

we get xi < x̄ < zi.177

Figure 1 suggests that the prediction and meta-prediction of a given agent can be on178

different sides of x̄ when s ̸= θ. Then, overshoot rate in predictions (px) and meta-predictions179

(pz) may differ.180

Definition 1 (Overshoot surprise). An overshoot surprise occurs when pz ̸= px. The181

overshoot surprise is positive if pz > px and negative if pz < px. The size of the overshoot182

surprise is given by ∆p = pz − px.183

The following result relates overshoot surprise to inconsistency in x̄N :184

Theorem 3. Overshoot rates satisfy pz ≥ px (pz ≤ px) when lim
N→∞

x̄N > θ
(
lim

N→∞
x̄N < θ

)
.185

Furthermore, ∆p is a monotonically increasing function of lim
N→∞

(x̄N − θ).186

Theorem 3 establishes that an overshoot surprise is an indicator of the size and direc-187

tion of the inconsistency in x̄N resulting from the shared-information problem. A positive188

overshoot surprise suggests that the average prediction overestimates θ while a negative189
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overshoot surprise suggests underestimation. Furthermore, the size of the overshoot sur-190

prise positively correlates with the asymptotic bias in x̄N . These observations motivate the191

Surprising Overshoot estimator introduced below.192

3.4 The Surprising Overshoot estimator193

Let F be the cumulative population density of predictions. Also let the function Q(q) =194

inf{x ∈ {x1, x2, . . . , xN}|F (x) ≥ q} represent the population quantile of predictions at a195

given cumulative density q ∈ [0, 1]. We can consider x̄N as an estimator for Q(1−px) because196

lim
N→∞

x̄N = x̄ = Q(1−px). Section 3.3 suggests that an inconsistency in x̄N is reflected in how197

overshoot rates px and pz are related. Consider the case of pz > px, i.e. a positive overshoot198

surprise. Then, x̄N overestimates θ in the limit, suggesting that an estimator that converges199

to a lower quantile of F could be more accurate. Theorem 4 suggests that Q(1− pz) is the200

target quantile.201

Theorem 4. If there exists at least one xi ∈ {x1, x2, . . . , xN} such that xi = θ, then Q(1−202

pz) = xi = θ.203

Intuitively, if there is at least one perfectly accurate agent in the population, Q(1 − pz)204

locates her prediction. What if there is no such agent? Then, Q(1 − pz) equals to the205

prediction(s) that fall closest to θ among all predictions smaller than θ. In that case, θ lies206

at a convex combination of Q(1−pz) and inf{x ∈ {x1, x2, . . . , xN}|x > Q(1−pz)}. Theorem207

3 showed that pz ̸= px when x̄N is an inconsistent estimator. For example, we have pz > px208

when x̄N has an upward asymptotic bias, implying that Q(1− pz) is a smaller quantile than209

x̄ (which corresponds to Q(1−px)). Thus, even if Q(1−pz) differs from θ, it would be closer210

to θ than x̄ in most cases. Theorem 2 showed that px = pz when there is no asymptotic bias211

in x̄N . Thus, Q(1− pz) = Q(1− px) = x̄ when x̄N is a consistent estimator.212

Theorem 4 applies for the limiting case where the whole population of agents is available.213

In practice, the DM can only recruit a finite sample of agents. The population distribu-214

tion F and the quantile function Q are unknown. Thus, Q(1 − pz) cannot be calculated.215
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Let F̂N be the empirical cumulative distribution function (CDF) and Q̂N(q) = inf{x ∈216

{x1, x2, . . . , xN}|F̂N(x) ≥ q} represent the corresponding sample quantile function in a finite217

sample of agents of size N . Also let p̂xN = 1
N

N∑
i=1

1(xi > x̄N) and p̂zN = 1
N

N∑
i=1

1(zi > x̄N) be218

the sample overshoot rate in predictions and meta-predictions respectively. The definition219

below introduces the Surprising Overshoot (SO) algorithm:220

Definition 2 (The Surprising Overshoot algorithm). The Surprising Overshoot algo-221

rithm constructs the SO estimator xSO
N for θ following the steps below:222

1. Elicit {x1, x2, . . . , xN} and {z1, z2, . . . , zN}223

2. Calculate p̂zN = 1
N

N∑
i=1

1(zi > x̄N).224

3. Set xSO
N = Q̂N(1− p̂zN) where Q̂N is the sample quantile function.225

The SO algorithm simply locates the 1 − p̂zN quantile of the sample predictions where226

quantile function is the inverse of empirical CDF. An alternative formulation (elaborated227

in Section 4.4) interpolates between the order statistics to construct a continuous quantile228

function.229

Why should xSO
N be a better estimator than x̄N? Theorem 4 shows that Q(1 − pz) is230

either equal to or falls very close to θ. If the sample quantile Q̂N(1− p̂zN) converges to the231

population counterpart for N → ∞, we would expect very little or no asymptotic bias in232

xSO
N . In contrast, x̄N could exhibit a substantial asymptotic bias. The SO estimator picks a233

lower or higher quantile depending on the direction and size of the asymptotic bias in x̄N .234

Section 4 presents supporting empirical evidence. Firstly, sample overshoot surprises235

(calculated using p̂zN and p̂xN) strongly correlate with the forecasting errors of average236

prediction. The sample measures exhibit the pattern predicted by Theorem 3 in the limit.237

Secondly, the SO estimator produces significantly more accurate estimates than the average238

prediction. Section 3.5 elaborates on when we expect the SO algorithm to perform well and239

motivates the empirical analysis.240
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3.5 Effectiveness of the SO estimator241

The SO estimator relies on the empirical distribution of predictions as well as agents’242

meta-predictions. This property has implications about the prediction problems where we243

may expect the SO algorithm to be more effective. To illustrate, consider the two example244

empirical densities below. Both figures depict predictions from a sample of 10 agents where245

the sample average prediction is 0.4 while θ = 0.25. In Figure 2a agents report one of 0.5, 0.3246

or 0.1 as prediction. The distribution of predictions in Figure 2b is more dispersed around247

the average prediction. Suppose the meta-predictions in each example (not shown on figures)248

are such that p̂zN = 0.2 in both cases. Then the SO estimate is 1 − p̂zN = 0.8 quantile of249

the empirical density of predictions. The orange bar in each figure locates the SO estimate.250

(a) Low dispersion (b) High dispersion

Figure 2: Two examples of empirical density of predictions

The SO estimate is more accurate in the high dispersion case simply because the 0.2251

quantile falls closer to θ. The SO algorithm picks the prediction that corresponds to the252

sample quantile 1− p̂zN . So the set of values xSO
N can take depends on the empirical density253

of predictions. Even when 1− p̂zN provides an accurate estimate of the cumulative density at254

θ, the SO estimate may not be more accurate than x̄N simply because 1− p̂zN quantile of the255

sample predictions is not close to θ. Such cases are less likely when the sample size is higher256

and/or the empirical density of predictions is more dispersed, as in Figure 2b. Therefore, we257

may expect the SO algorithm to perform better in larger samples and when the predictions258
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are more dispersed. Intuitively, high dispersion can be considered as representing prediction259

tasks where individual judgments disagree, which could occur when the event of interest is260

highly uncertain and there is no strong consensus among forecasters. The following sections261

test the SO algorithm using experimental data. In the analyses below, sample size and262

dispersion of predictions are considered to be the factors of interest.263

4 Testing the SO algorithm264

This section outlines the empirical methodology and presents some preliminary evidence265

on overshoot surprises. I use data from various experimental studies to test the SO algorithm.266

Section 4.1 provides information on the data sets. Section 4.2 gives an overview of the267

empirical methodology. In testing the SO algorithm, I follow a comparative approach. The268

analysis will implement various alternative methods as a benchmark and test if the SO269

algorithm performs significantly better. Section 4.3 introduces the benchmarks. Section270

4.4 specifies the types of quantile functions used in implementation of the SO algorithm.271

Section 4.5 provides some preliminary findings on overshoot surprises and how they relate272

to the inconsistency in the simple average of predictions.273

4.1 Data sets274

I use data from three experimental studies2. The first data set comes from Study 1 in275

Palley and Soll (2019). They conducted an online experiment where subjects reported their276

prediction and meta-prediction on the number of heads in 100 flips of a biased two-sided coin.277

The actual probability of heads is unknown to the subjects. Prior to submitting a report278

on a coin, each subject observed two independent samples of flips. One sample is common279

to all subjects and represents the shared signal. The second sample is subject-specific and280

2Supplemental material including all data sets and R scripts (R Core Team, 2020; Wickham et al., 2022;

Wickham, 2016, 2007; Wickham and Girlich, 2022) for reproducing all empirical results below are available

at https://github.com/cempeker/supplemental/tree/main/surpovershoot
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constitutes a subject’s private signal. A subject’s best guess on the number of heads in281

100 new flips is effectively that subject’s best guess on the unknown bias. Thus, the “Coin282

Flips” data set includes predictions on an unknown probability and meta-predictions on the283

average prediction of other subjects.284

Study 1 in Palley and Soll (2019) implements three different information structures. All285

subjects observe the shared signal and a private signal in the ‘Symmetric’ setup while only286

a subset of subjects observe a private signal in the ‘Nested-Symmetric’ structure. Private287

signals are subject-specific and unbiased in both structures, which agrees with the theoretical288

framework of the SO algorithm. The other setup is referred to as the ‘Nested’ structure, in289

which private signals are not subject-specific. The average of private signals do not converge290

to the true value, which deviates from the theoretical framework of the SO algorithm. Thus,291

all results from Coin Flips data in Section 5 exclude ‘Nested’ structure and use the prediction292

data (48 distinct coins) from the ‘Symmetric’ and ‘Nested-Symmetric’ structures only. For293

completeness, Appendix E presents an analysis using data from the ‘Nested’ structure.294

The Coin Flips data set from Palley and Soll (2019)’s Study 1 allows testing the SO295

algorithm in a controlled setup. Since the unknown probabilities are known to the analyst,296

it is possible to calculate prediction errors directly. The number of subjects per coin vary297

between 101 and 125. Palley and Soll (2019) run a second study where they use the same298

tasks as in Study 1. However they vary subjects’ incentives and the sample sizes are much299

smaller. Thus, their second study will not be considered here.300

The second source of data involves two experimental studies from Wilkening et al. (2021).301

The first replicates the experiment initially conducted by Prelec et al. (2017). For each U.S.302

state, subjects are asked if the largest city is the capital of that state. Prelec et al. (2017)303

required subjects to pick true or false and report the percentage of other subjects who would304

agree with them. Wilkening et al. (2021) asked subjects to report probabilistic predictions305

and meta-predictions on the statement (largest city being the capital city), which allows us306

to implement the SO algorithm. The “State Capital” data set includes data from 89 subjects307
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in total and each subject answered 50 questions (one per state). In the second experiment,308

subjects are presented with U.S. grade school level true/false general science statements such309

as ‘Water boils at 100 degrees Celsius at sea level’, ‘Materials that let electricity pass through310

them easily are called insulators’ and ‘Voluntary muscles are controlled by the cerebrum’.311

The “General Knowledge” data includes judgments on 500 such statements in total. Each312

subject reports a prediction and a meta-prediction on the probability of a statement being313

true for 100 statements. The number of subjects reporting on a given statement varies314

between 89 to 95.315

4.2 Methodology316

The empirical analysis tests the accuracy of the SO algorithm using the prediction and317

meta-prediction data from the Coin Flips, General Knowledge and State Capital data sets.318

For each prediction task, I calculate the SO estimate as well as aggregate estimates from319

the alternative aggregation methods that are considered as benchmarks. Section 4.3 provide320

information on these benchmarks. In each data set, the performance of a method is based321

on an average measure of accuracy across all prediction tasks. In the Coin Flips data322

set, the unknown probability of interest is known to the aggregator. Thus, accuracy is323

measured by the difference between the estimate and the actual probability. In contrast, the324

General Knowledge and State Capital tasks have a binary truth. I calculate Brier scores to325

evaluate the aggregate estimates. In all data sets, the analysis follows a bootstrap approach326

to compare forecast errors across the aggregation methods. Section 5 elaborates on the327

accuracy measures and the bootstrap analyses.328

Section 3.5 argued that the SO algorithm could be more effective in moderate to large329

crowds and/or when predictions are more dispersed. In each data set, I generate bootstrap330

samples of different sizes and evaluate the relative accuracy of the SO estimate as the crowd331

size increases. Furthermore, the statements in General Knowledge and State Capital data332

sets differ in terms of the presence of a strong consensus among the predictions. This333
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allows us to investigate how the extent of disagreement in predictions relates to the relative334

performance of SO algorithm. To illustrate, consider the two example items from the General335

Knowledge data in Figure 3 below:336

Figure 3: Predictions on two example items from the General Knowledge data

For the item in the left panel, a large proportion of predictions are at 100% and almost337

all predictions are 50% or higher. The dispersion of predictions is smaller than the item in338

the right panel, where predictions vary from 0% to 100%. Similar examples can be found in339

the State Capital data. I classify the items in General Knowledge and State Capital data340

sets in three categories (low, medium and high dispersion of predictions) and investigate if341

the SO estimator is more accurate than the benchmarks under high dispersion. Figure C1 in342

Appendix C suggest that the dispersion of predictions vary much less across the Coin Flips343

tasks compared to the General Knowledge and State Capital tasks. The level of dispersion344

in Coin Flips predictions is relatively low as well. The low, medium and high dispersion345

categories of tasks would not be distinct in the Coin Flips data and almost all coin flips346

tasks would qualify as low dispersion considering other data sets. Therefore, the analysis on347

the effect of dispersion uses the General Knowledge and State Capital data only.348
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4.3 Benchmarks349

The benchmarks in testing the SO algorithm can be categorized in two groups. I will350

first consider simple benchmarks, namely the simple average and median prediction. Simple351

averaging is an easy and intuitive aggregation method. The median forecast is also popular352

because it is more robust to outliers. These simple aggregation methods do not require353

meta-predictions, which makes them easier to implement. However, as shown in Section 2354

with simple averaging, these methods may produce an inaccurate aggregate judgment. As355

discussed in Section 1, there exists a growing literature which provides more sophisticated356

solutions to the aggregation problem utilizing meta-beliefs. I consider three advanced bench-357

marks : Pivoting (Palley and Soll, 2019), knowledge-weighting (Palley and Satopää, 2022),358

and meta-probability weighting (Martinie et al., 2020).359

The pivoting method first computes simple average of predictions and meta-predictions, x̄360

and z̄ in our notation respectively. Then the mechanism pivots from x̄ in different directions.361

The pivot in the direction of z̄ provides an estimate for the shared information while the362

step in the opposite direction gives an estimate for the average of private signals. These363

estimates are combined using Bayesian weights to produce the optimal aggregate estimate.364

The canonical pivoting method requires knowledge of the Bayesian weight ω to determine the365

optimal pivot size and aggregation. Palley and Soll (2019) propose minimal pivoting (MP)366

as a simple variant which adjusts x̄ by x̄− z̄. The adjustment moves the aggregate estimate367

away from the shared information and alleviates the shared-information problem. MP does368

not require the knowledge of ω but it may only partially correct for the inconsistency in x̄.369

Knowledge-weighting (KW) proposes a weighted crowd average as the aggregate predic-370

tion. The weights are estimated by minimizing the peer prediction gap, which measures the371

accuracy of weighted crowds’ aggregate meta-prediction in estimating the average predic-372

tion. In a similar framework to Section 2, Palley and Satopää (2022) show that minimizing373

the peer prediction gap is a proxy for minimizing the mean squared error of a weighted374

aggregate prediction. Intuitively, KW is motivated by the idea that a weighted crowd that375
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is accurate in predicting others could be more accurate in predicting the unknown quantity376

itself as well. The KW estimate is simply the weighted average prediction of such a crowd.377

Palley and Satopää (2022) also develop an outlier-robust KW. Since probabilistic judgments378

are bounded, we may not expect a severe outlier problem. Palley and Satopää (2022) im-379

plement the KW method in the Coin Flips data. Their results suggest that standard KW380

performs better than outlier-robust KW. Thus, I consider standard KW as a benchmark in381

the analyses below.3382

Meta-probability weighting (MPW) aims to construct a weighted average of probabilistic383

predictions. Martinie et al. (2020) consider a slightly different Bayesian setup where agents384

receive a private signal from one of the two signal technologies, one for experts and the385

other for novices. The absolute difference between an agent’s optimal prediction and meta-386

prediction is higher if the agent’s signal is more informative. Based on this result, the MPW387

algorithm assigns weights proportional to the absolute differences between their prediction388

and meta-prediction. It is expected that agents with more informative private signals receive389

higher weights and the resulting weighted average is more accurate than the unweighted390

average of predictions.391

Similar to the advanced benchmarks listed above, the SO algorithm relies on an aug-392

mented elicitation procedure that elicits meta-predictions in addition to predictions. In393

contrast, the mechanisms in simple benchmarks do not require information from meta-394

predictions. Thus, we may expect the SO algorithm to significantly outperform simple395

benchmarks. The advanced benchmarks have similar information demands to the SO algo-396

rithm, which makes them appropriate benchmarks for a comparative analysis.397

3The R package metaggR provided by Palley and Satopää (2022) is used to implement knowledge-

weighting.
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4.4 Implementation of the SO algorithm398

The SO algorithm locates a sample quantile according to the quantile function Q̂N .399

The exact estimate depends on the specification of the quantile function. For robustness,400

the analysis implements two versions of the algorithm. In the first, the quantile function401

Q̂N(q) is a step function given by the inverse empirical CDF. The second implementation402

interpolates between order statistics to construct a piecewise linear quantile function. To403

illustrate, suppose we have a sample of 5 predictions given by {0.15, 0.2, 0.3, 0.65, 0.9}. Figure404

4 depicts the quantile function corresponding to each implementation:405

(a) Quantile function, type 1 (b) Quantile function, type 2

Figure 4: Example quantile functions for the implementations of the SO algorithm.

Section 5 presents results from the implementation where the quantile function is as in406

Figure 4a. Appendix F runs the same analysis, except that the quantile function used in the407

SO algorithm follows the interpolation approach in Figure 4b. Both specifications produce408

very similar results. Therefore, the same conclusions apply.409

4.5 Preliminary evidence on overshoot surprises410

Section 3 established a relationship between the size and direction of overshoot surprises411

and prediction errors. The more pz differs from px, the higher the overshoot surprise, sug-412

gesting a higher miscalibration in the average prediction. Presence of an overshoot surprise413

20



relates to the performance of the SO algorithm as well. We may expect a larger error414

reduction from using the SO algorithm when |pz − px| is larger.415

The Coin Flips data set presents an opportunity to investigate whether overshoot sur-416

prises correlate with the inconsistency in the average prediction. In this experiment, both417

the shared signal s and the unknown probability θ in each coin are generated by the exper-418

imenter. Recall from Theorem 3 that a positive (negative) overshoot surprise is associated419

with x̄ > θ (x̄ < θ), which correspond to the case of s > θ (s < θ). We expect no overshoot420

surprise if s = θ, resulting in x̄ being perfectly accurate. Since the information on s and θ is421

available, we can investigate if this pattern is observed in the sample data. Figure 5 shows422

the relationship between ∆p̂ = p̂z − p̂x (size of the sample overshoot surprise) and s − θ.423

Each dot represents an item (a distinct coin) and the blue line shows the best linear fit.424

Figure 5: The relationship between s − θ and overshoot surprises (∆p̂) in prediction tasks.
Shaded areas show the regions where the signs of s− θ and ∆p̂ are as predicted by Theorem
3.

Figure 5 shows a strong linear association between s − θ and overshoot surprise (∆p̂).425

Also observe that most of the points are within the shaded regions. A positive (negative)426

overshoot surprise is much more likely to occur when s > θ (s < θ). In addition, |∆p̂| is427
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higher when the absolute difference between s and θ is higher. In accordance with Theorem428

3, an overshoot surprise is a strong indicator of the size and direction of the inconsistency429

in the average prediction. The SO estimator can be thought of as x̄N adjusted away from430

the direction of the asymptotic bias where the adjustment is determined by the sign and431

magnitude of the overshoot surprise. Thus, Figure 5 suggests a potential error reduction432

from using the SO algorithm. Section 5 explores whether the SO algorithm improves over433

various benchmarks.434

5 Results435

This section presents empirical evidence on the performance of the SO algorithm. Sec-436

tion 5.1 implements the SO algorithm and benchmarks in the Coin Flips data. The results437

demonstrate the accuracy of the SO estimator as the crowd size increases. Section 5.2 imple-438

ments the SO algorithm and benchmarks in the General Knowledge and State Capital data439

sets. This section analyzes the accuracy of the SO algorithm at different levels of dispersion440

in predictions as well as investigating the effect of crowd size. I present evidence suggesting441

that the SO estimator performs especially well when predictions disagree greatly.442

5.1 Coin Flips data443

The empirical analysis follows a bootstrap approach similar to Palley and Satopää (2022).444

For each item (prediction task) in the Coin Flips data set, a subset of subjects of size M445

is randomly selected to construct a bootstrap sample. Then, for each sample and item I446

compute the absolute and squared error of aggregate predictions from the benchmarks and447

the SO algorithm. The average of squared errors across the items gives a measure of the448

corresponding method’s error in that task. This procedure is run 1000 times for each crowd449

sizeM ∈ {10, 20, . . . , 100} to obtain 1000 data points of absolute error and root mean squared450

error (RMSE) for each aggretaion method. The observations from bootstrap samples allow451
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us to test for differences in errors between the SO algorithm and a benchmark. I consider452

two measures for comparison. Firstly, I calculate average RMSE across all iterations for each453

method. Then, it is possible to observe how average RMSE changes across M . Secondly,454

I log transform the absolute errors and calculate pairwise differences for each iteration to455

construct 95% bootstrap confidence intervals for each M . The differences in log-transformed456

errors can be interpreted as percentage error reduction (SO estimator vs benchmark). The457

bootstrap approach also allows us to see the effect of crowd size on the SO estimates.458

Figure 6 presents the results of the bootstrap analysis. Figure 6a depicts the average459

RMSE across iterations while Figure 6b shows the bootstrap confidence intervals for reduc-460

tion in log absolute error (the SO estimator vs benchmark). Box plots show 2.5%, 25%, 50%,461

75% and 97.5% quantiles in pairwise differences in log-transformed errors. Points above the462

0-line represent bootstrap runs where the SO estimate has a lower error.463

(a) Average RMSE vs (bootstrap) crowd size
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(b) Reduction in log absolute error (averaged across items) in Bootstrap samples

Figure 6: Bootstrap analysis on Coin Flips data

Figure 6a shows that the SO algorithm achieves the lowest error in samples of more464

than 30 subjects. Observe that increasing the sample size has a stronger effect on the SO465

estimator. Almost all aggregation methods benefit from larger samples due to the wisdom466

of crowds effect. For the SO algorithm, benefits of a larger crowd are twofold. Not only the467

wisdom of crowds effect becomes more pronounced, but also a larger sample of predictions468

typically has a smoother empirical density. Then, the SO algorithm can produce a more469

precise estimate, as illustrated in Figure 2.470

Figure 6b indicates that the SO algorithm outperforms the simple benchmarks. We also471

see that the SO algorithm achieves lower errors in most bootstrap samples than the advanced472

benchmarks. Appendix D provides the 95% bootstrap confidence intervals depicted in Figure473

6b. The SO algorithm improves the accuracy by 30-50% relative to the simple benchmarks.474

In large samples, the median percentage error reduction with respect to MP, KW and MPW475

is around 7%, 8% and 25% respectively.476

The Coin Flips study elicits judgments in a controlled setup. As discussed in Section 4.2,477
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the dispersion of predictions do not differ greatly across tasks. Section 5.2 presents evi-478

dence from General Knowledge and State Capital data, where subjects report probabilistic479

judgments on practical statements. Individual predictions are highly dispersed in some state-480

ments while there is a stronger consensus in others. This variety allows an analysis on the481

effectiveness of the SO algorithm for different levels of dispersion as well as crowd size.482

5.2 General Knowledge and State Capital data483

Unlike the Coin Flips data, the items in the State Capital and General Knowledge data

have a binary truth. I follow a similar approach to Budescu and Chen (2015) and Martinie

et al. (2020) and calculate transformed Brier scores associated with the aggregate estimates

of each method in each data set. The transformed Brier score of a method i in a given data

set is defined as

Si = 100− 100
J∑

j=1

(oj − xi
j)

2

J

where oj ∈ {0, 1} be the outcome of event j, J is the total number of events in the data484

set and xi
j ∈ [0, 1] is the aggregate probabilistic prediction of method i on event j. The485

transformed Brier score is strictly proper and assigns a score within [0, 100]. We want to test486

whether the SO algorithm achieves a higher transformed Brier score than the benchmarks.487

Similar to Section 5.1, I follow a bootstrap approach. However, unlike Section 5.1 I test488

the SO algorithm at different levels of dispersion of predictions as well as crowd size. Thus,489

this section presents results from two different bootstrap analyses. The first is similar to the490

analysis in Section 5.1, except that the transformed Brier score is used as a measure of accu-491

racy. I generate 1000 bootstrap samples of subjects for each crowd size M ∈ {10, 20, . . . , 80}492

and implement all aggregation methods in each bootstrap sample. The maximum crowd size493

is set at 80 because the number of subjects varies between 89 and 95. Then, I construct 95%494

confidence intervals for pairwise differences in transformed Brier scores of the SO estimator495
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and each benchmark. Figure 7 depicts the bootstrap confidence intervals for each data set.496

An observation above the 0-line indicates that the SO estimator achieved a higher trans-497

formed Brier score than the corresponding benchmark in that particular bootstrap sample.498

Appendix D provides the exact bounds of the intervals shown in Figure 7.499

Figure 7: Difference in Bootstrapped transformed Brier scores (SO vs benchmark) for each
crowd size.

Figure 7 suggests that increasing the sample size improves the performance of the SO500

algorithm relative to the simple average and median prediction in questions with a binary501

truth as well. A similar result holds for minimal pivoting, but not for knowledge-weighting502

and meta-probability weighting. The results are in accordance with Figure 6. Relative503

accuracy of the SO algorithm (weakly) improves as we move from small to moderate or large504

samples.505

I will now investigate if the SO algorithm is more effective than the alternatives when506

predictions disagree greatly. We can categorize the General Knowledge and State Capital507

items in terms of the dispersion of predictions and run the bootstrap analysis within each508
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category. For the main results below, I use standard deviation of predictions as the measure509

of dispersion in an item. Appendix G replicates the same analysis using kurtosis as the510

measure and finds very similar results. In the General Knowledge data, I categorize the511

items in three groups in terms of the standard deviation of predictions: bottom 10%, middle512

80% and top 10%. The bottom and top 10% items represent the low and high dispersion513

items respectively. The State Capital data includes a lower number of items. In order to514

have a reasonable number of items in each category, the thresholds are set at 25% and515

75%. Thus, the low, medium and high dispersion categories in the State capital data are516

bottom 25%, middle 50% and top 25% in terms of standard deviation in predictions. The517

bootstrap analysis generates samples and calculates transformed Brier scores separately for518

each dispersion category. A bootstrap sample consists of items from a category sampled with519

replacement. Each sample produces a transformed Brier score for each method. I generate520

1000 such bootstrap samples in each category and construct 95% confidence intervals for521

pairwise differences in transformed Brier scores of the SO estimator and each benchmark.522

Figure G2 in Appendix G presents the same analysis except that the thresholds are set at523

33% and 66% in both data sets, which results in an approximately equal number of tasks in524

each category. Pairwise differences in Brier scores are similar to the results below.525

Figure 8 presents 95% bootstrap confidence intervals for pairwise differences in trans-526

formed Brier scores. Panels in the 2x3 grid show the results from low, medium or high527

dispersion items in each data set. Each box plot shows 2.5%, 25%, 50%, 75% and 97.5%528

quantiles of pairwise differences in transformed Brier scores between the SO estimate and529

the corresponding benchmark. As in Figure 7, strictly positive pairwise differences would530

suggest higher accuracy for the SO algorithm than the corresponding benchmark.531
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Figure 8: Difference in Bootstrapped transformed Brier scores (SO vs benchmark). The
scales on y-axis are allowed to be free in each plot on the 2x3 grid

Appendix D provides the Bootstrap confidence intervals depicted in Figure 8. The con-532

fidence intervals show that the SO estimator significantly outperforms simple average and533

median in moderate and high dispersion items. Furthermore, almost all confidence inter-534

vals are strictly above the 0-line in the high dispersion category in each data set. In high535

dispersion items, the SO algorithm compares favorably to the advanced benchmarks as well.536

To summarize, results indicate that the SO algorithm is relatively more effective in mod-537

erate to large samples and when individual predictions disagree greatly, resulting in a more538

dispersed empirical density of predictions. Section 6 provides a further discussion on the539

strengths and limitations of the SO algorithm.540
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6 When and why is the SO algorithm effective?541

The findings in Section 5 not only document the effectiveness of the SO algorithm but542

also provides a “user’s manual” for a DM who intends to use an aggregation algorithm to543

combine probabilistic judgments. The SO algorithm is expected to perform relatively well544

in moderate to large samples and when the predictions are highly dispersed. Note that the545

DM knows or can determine the size of the sample of forecasters. Furthermore, the empirical546

density of predictions is observable to the DM prior to the resolution of the uncertain event.547

Thus, the decision to implement the SO algorithm can be based on the sample size and the548

observed dispersion in predictions.549

Figures 6 and 7 showed that the forecast errors of the SO algorithm decrease even more550

rapidly than the benchmarks as the sample size increases. Intuitively, the SO algorithm551

is more sensitive to the sample size because it relies on the sample density of predictions.552

The sample quantiles may overlap in very small samples. As the sample size increases, the553

sample density becomes more representative of the underlying population density and the554

quantiles could become more distinct. Then, the SO algorithm can produce a more fine-555

tuned aggregate prediction. The DM should use the SO algorithm if a moderate to large556

sample of forecasters is available. In very small samples, simple aggregation methods or the557

MP method may be preferred.558

The disagreement between experts is also a factor in the effectiveness of the SO algorithm.559

Consider a situation where there is a strong consensus among experts: individual predic-560

tions are clustered around a certain value (low dispersion). We can imagine two scenarios in561

which the DM would observe such a pattern. Experts could be highly accurate individually,562

in which case a simple average of predictions would perform sufficiently well. In the second563

scenario, predictions are clustered around an inaccurate value. Then, the majority of pre-564

dictions would be highly inaccurate. Recent work developed algorithms to pick the correct565

answer to a multiple choice question when the majority vote is inaccurate (Prelec et al.,566

2017; Wilkening et al., 2021). An analogous solution in aggregating probabilistic judgments567
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may identify a contrarian but well-calibrated prediction and discard others. As discussed in568

Section 4.3, the KW and MPW mechanisms set individual weights for aggregation. How-569

ever, these mechanisms are highly unlikely to attach 0 weight to a very high proportion of570

predictions. The MP method makes an adjustment based on average prediction and meta-571

prediction. It does not attempt to locate more accurate experts. In theory, the SO algorithm572

can pick the sample quantile that corresponds to the contrarian prediction. However, the573

sample quantiles are close to each other when predictions are highly clustered. Thus, the SO574

algorithm’s adjustment may not be sufficiently extreme. Alternatively, if the DM expects a575

strong consensus with reasonably well-calibrated individual expert predictions, eliciting the576

predictions only and using a simple aggregation method could be preferable. Differences in577

transformed Brier scores at low dispersion in Figure 8 are smaller than the differences at578

higher levels of dispersion. Simple aggregation methods could be nearly as accurate as the579

more sophisticated aggregation algorithms at low dispersion.580

Now consider a situation of high dispersion in predictions instead. Experts disagree in581

their predictions and some experts are less accurate (ex-post) than the others. The high dis-582

persion category in General Knowledge and State Capital studies represent this case. Figure583

8 suggests that the SO algorithm not only outperforms the simple aggregation methods, but584

it could also be more effective than the advanced benchmarks as well. The SO algorithm585

performs well under higher disagreement because the sample quantiles become more distinct,586

which allows more room for improvement. High dispersion in predictions also allows more587

precision in the SO estimator. Thus, a DM who observes strong disagreement among indi-588

vidual predictions may prefer the SO algorithm. Note that an aggregation problem can be589

considered as more tricky when forecasters strongly disagree. The SO algorithm is particu-590

larly effective in problems where the DM might need an effective aggregation algorithm the591

most.592

The SO algorithm differs from the other aggregation algorithms in its use of the empirical593

density of predictions. For a given level of overshoot surprise, the absolute difference between594
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the SO estimator and the average prediction depends on the dispersion in the empirical595

density of predictions. However, the SO algorithm always produces an aggregate estimate596

that lies within the range of individual predictions. Recall that the MP method uses a fixed597

step size to adjust the average prediction. In contrast, the SO algorithm’s adjustment on598

the aggregate prediction is informed and restrained by the empirical density. This makes the599

SO estimator more robust to potential over-adjustments, which may reduce the calibration600

of the aggregate prediction even when it is adjusted in the correct direction.601

7 Conclusion602

Decision makers frequently face the problem of predicting the likelihood of an uncertain603

event. Leveraging the collective wisdom of many experts has been shown to be a promising604

solution. However, the use of collective wisdom is not a trivial solution because there are605

typically no general guidelines on how individual judgments should be aggregated for maxi-606

mum accuracy. Forecasters typically have shared information through their training, public607

knowledge, past observations, knowledge of the same academic works, etc. In such cases,608

the simple average of predictions exhibits the shared-information problem (Palley and Soll,609

2019). Recent work developed aggregation algorithms that rely on an augmented elicitation610

procedure (Prelec, 2004; Prelec et al., 2017; Palley and Soll, 2019; Palley and Satopää, 2022;611

Wilkening et al., 2021). These algorithms use individuals’ meta-beliefs to aggregate predic-612

tions more effectively. This paper follows a similar approach and proposes a novel algorithm613

to aggregate probabilistic judgments on the likelihood of an event. The Surprising Overshoot614

algorithm uses experts’ probabilistic meta-predictions to aggregate their probabilistic pre-615

dictions. The SO algorithm utilizes the information in meta-predictions and the empirical616

density of predictions to produce an estimator.617

Experimental evidence shows that the SO algorithm consistently outperforms simple av-618

eraging and median prediction. I also compared the SO algorithm to alternative aggregation619
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algorithms that elicit meta-beliefs (Palley and Soll, 2019; Palley and Satopää, 2022; Mar-620

tinie et al., 2020). The SO algorithm is particularly effective in moderate to large samples of621

experts and when the empirical density of predictions is highly dispersed. Such high disper-622

sion is more likely to occur in prediction tasks where forecasters strongly disagree in their623

individual assessment.624

In practice, a DM is more likely to need a judgment aggregation algorithm when expert625

predictions lack a clear consensus. In such decision problems, the DM finds herself with626

conflicting forecasts with no straightforward way to combine them. The SO algorithm is627

especially powerful in such challenging aggregation problems because of its effectiveness628

in aggregating disagreeing judgments. The dispersion in predictions that result from the629

disagreement among experts works in the algorithm’s favor.630
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Appendices631

A Proofs632

A.1 Theorem 1633

Let agent i ∈ {1, 2, . . . , N} be an arbitrary agent. Suppose all agents j ∈ {1, 2, . . . , N} \634

{i} report truthfully, i.e. (xj, zj) = (E[θ|s, tj], E[x̄−j|s, tj]) where x̄−j represents the average635

prediction of all agents excluding j. Truthful reporting is a Bayesian Nash equilibrium if636

(xi, zi) = (E[θ|s, ti], E[x̄−i|s, ti]) is agent i’s best response.637

Let (x∗
i , z

∗
i ) = argmax

xi,zi

E[πi|s, ti] denote the optimal prediction and meta-prediction that638

maximizes agent i’s expected score given {s, ti} and truthful reporting from other agents.639

Note that E[πi|s, ti] = E[πxi|s, ti]+E[πzi|s, ti]. Agent i’s prediction does not affect E[πzi|s, ti]640

as it is completely determined by zi and x̄−i. Similarly, E[πxi|s, ti] is determined by xi641

and the realization of Y only. Thus agent i’s meta-prediction has no effect on E[πxi|s, ti].642

Thus, agent i’s maximization problem is separable where x∗
i = argmax

xi

E[πxi|s, ti] and z∗i =643

argmax
xi

E[πzi|s, ti]. Recall that πxi and πzi are maximized at θ and x̄−i respectively. Then,644

x∗
i = E[θ|s, ti] and z∗i = E[x̄−i|s, ti]. Truthful report (xi, zi) = (E[θ|s, ti], E[x̄−i|s, ti]) is agent645

i’s best response, which completes the proof.646

A.2 Lemma 1647

Suppose xi > x̄N for an agent i. For this agent, we can write

xi > x̄N

(1− ω)s+ ωti > (1− ω)s+ ω
1

N

N∑
k=1

tk

ti >
1

N

N∑
k=1

tk = t̄

For N → ∞, we have t̄ → θ and x̄ = lim
N→∞

x̄N , so we get xi > x̄ ⇐⇒ ti > θ648
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A.3 Lemma 2649

Suppose zi > x̄N for an agent i. The following holds for zi:

zi > x̄N

(1− ω)s+ ωxi > (1− ω)s+ ω
1

N

N∑
i=k

tk

xj >
1

N

N∑
k=1

tk = t̄

For N → ∞, we have t̄ → θ and x̄ = lim
N→∞

x̄N , so we get zj > x̄ ⇐⇒ xj > θ650

A.4 Theorem 2651

The sample average x̄N is a consistent estimator if lim
N→∞

x̄N = x̄ = (1−ω)s+ωθ = θ, which652

occurs when s = θ and there is no shared-information problem. Then, xi > x̄ ⇐⇒ zi > x̄.653

This follows from Lemma 2 and x̄ = θ. Thus, an agent’s prediction and meta-prediction are654

always on the same side of x̄, implying that px = pz.655

A.5 Theorem 3656

Lemmas 1 and 2 suggest that px ≡ lim
N→∞

1
N

N∑
i=1

1(ti > θ) and pz ≡ lim
N→∞

1
N

N∑
i=1

1(xi > θ).

Note that xi = (1 − ω)s + ωti > θ holds if and only if ti > θ − ((1 − ω)/ω)(s − θ). So, we

have the following:

px ≡ lim
N→∞

1

N

N∑
i=1

1(ti > θ) (4)

pz ≡ lim
N→∞

1

N

N∑
i=1

1

(
ti > θ − 1− ω

ω
(s− θ)

)
(5)

Consider first the case lim
N→∞

x̄N > θ. We have (1 − ω)s + ωθ > θ, which implies s > θ.657

Then, we must have pz ≥ px, with pz > px if there exists at least one private signal ti ∈658
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(
θ − 1−ω

ω
(s− θ), θ

)
and pz = px otherwise. Now suppose lim

N→∞
x̄N < θ, which occurs when659

s < θ. Since s − θ < 0, we get pz ≤ px where the inequality is strict if there is a private660

signal ti that satisfies ti ∈
(
θ, θ − 1−ω

ω
(s− θ)

)
.661

For the result on ∆p, consider two alternative scenarios s ∈ {s0, s1} for any given s0662

and s1. Let x̄0
N = (1 − ω)s0 + ωt̄ and x̄1

N = (1 − ω)s1 + ωt̄ be the average prediction when663

s = s0 and s = s1 respectively. For any given s, the asymptotic bias in x̄N is given by664

lim
N→∞

x̄N − θ = (1−ω)(s− θ). Let {p0x, p0z} and {p1x, p1z} be the overshoot rates for s = s0 and665

s = s1 respectively. Also let ∆p0 = p0z − p0x and ∆p1 = p1z − p1x. Equation 4 suggests p0x = p1x666

and the comparison between ∆p0 and ∆p1 depends on p0z and p1z only. First, consider the667

case s1 < s0 < θ. We have lim
N→∞

(x̄1
N − θ) < lim

N→∞
(x̄0

N − θ) < 0, i.e. there is a negative668

asymptotic bias in both cases but the bias is stronger for s = s1. Then, we should get669

∆p1 ≤ ∆p0. Since s1 − θ < s0 − θ, we get p1z ≤ p0z from Equation 5, leading to ∆p1 ≤ ∆p0.670

Second case is θ < s0 < s1. Then, 0 < lim
N→∞

(x̄0
N − θ) < lim

N→∞
(x̄1

N − θ), i.e. positive671

asymptotic bias is stronger for s = s1 and we should have ∆p1 ≥ ∆p0. Since s1 − θ > s0 − θ672

Equation 5 suggests p1z ≥ p0z and hence, ∆p1 ≥ ∆p0. Finally, consider s0 < θ < s1. We have673

lim
N→∞

(x̄0
N − θ) < 0 < lim

N→∞
(x̄1

N − θ), there is a positive bias for s = s1 and negative bias for674

s = s0. Similar to the second case, it follows from s1−θ > s0−θ that p1z ≥ p0z, which implies675

∆p1 ≥ ∆p0 as claimed.676

A.6 Theorem 4677

Lemma 2 established that zi > x̄ ⇐⇒ xi > θ for any agent i in the limit. So, pz also678

measures the population proportion of predictions xi that overshoot θ. Then, Q(1 − pz) ≡679

sup{x ∈ {x1, x2, . . . , xN}|x ≤ θ}, i.e. Q(1 − pz) corresponds to the highest prediction that680

does not exceed θ. If there exists xi ∈ {x1, x2, . . . , xN} such that xi = θ, we must have681

Q(1− pz) = xi = θ by definition.682
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B Mixed sample of experts and non-experts683

Without loss of generality, let agents i ∈ {1, 2, . . . , K} be the experts who observe both

the shared signal and a private signal. Agents i ∈ {K + 1, K + 2, . . . , N} are non-experts

observe the shared signal s only. Then,

xi =


(1− ω)s+ ωti for i ∈ {1, 2, . . . , K}

s for i ∈ {K + 1, K + 2, . . . , N}

Also, we have zi = (1 − ω)s + ωxi for i ∈ {1, 2, . . . , K} while zi = s for others. Average684

prediction is given by x̄N = 1
N

N∑
i=1

xi = (1− ω)s+ ω 1
K

K∑
i=1

ti.685

In this setup, Lemma 1 applies for experts and Lemma 2 apply for all. Consider i ≤ K686

first. We have xi > x̄N if and only if ti > t̄ where t̄ = 1
K

K∑
i=1

ti. Similarly zi > x̄N ⇐⇒ xi > t̄.687

For N → ∞, these conditions become equivalent to Lemmas 1 and 2. Now consider i > K.688

We have xi > x̄N iff s > t̄. Then, in the limit xi > x̄ ⇐⇒ s > θ. Also observe that689

zi = (1 − ω)s + ωE

[
1
K

K∑
i=1

ti s

]
= s for a non-expert. Since zi = xi = s, we also have690

zi > x̄ ⇐⇒ xi = s > θ. So, Lemma 2 applies for non-experts as well.691

Theorems 2, 3 and 4 also hold in a mixed crowd of experts and non-experts. Consider692

Theorem 2 first. Average prediction x̄N is consistent when s = θ. In that case, x̄ = θ and693

we have xi = zi = x̄ = θ for all i ∈ {K + 1, K + 2, . . . , N}. From Lemma 2, prediction694

and meta-prediction of either an experts or a non-experts always falls on the same side of695

x̄, implying that Theorem 2 holds. Next, consider Theorem 3. We always have xi = zi = s696

for all i ∈ {K + 1, K + 2, . . . , N}, i.e. a non-experts prediction and meta-prediction are the697

same. We have lim
N→∞

x̄N = x̄ > θ when s > θ, in which case we also have xi = zi = s > x̄698

for all non-experts. Vice versa is true for lim
N→∞

x̄N < θ, where all non-expert predictions699

and meta-predictions are smaller than x̄. Non-expert reports do not have any effect on the700

comparison between pz and pz because their predictions and meta-predictions are on the701

same side according to both measures. The proof of Theorem 3 applies for experts, namely702
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agents i ∈ {1, 2, . . . , K}. Since non-experts have no effect on the comparison between pz703

and px, Theorem 3 applies. Finally, consider Theorem 4. For all non-experts, we have704

zi = s > x̄ if s > θ and zi = s ≤ x̄ otherwise. Regardless of whether non-experts overshoot705

or undershoot in meta-predictions, Q(1 − pz) picks the highest prediction xi that satisfies706

xi ≤ θ. Only the exact quantile changes. Thus, Theorem 4 applies as well.707

C Dispersion of predictions in different data sets708

Figure C1: Inter-quartile range of predictions across the items in each data set. All predic-
tions are scaled to 0-100%
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D Bootstrap confidence intervals709

C.Size Comparison Low.B. Upp.B. C.Size Comparison Low.B. Upp.B.
10 Simp.Average -0.28 0.19 60 Simp.Average 0.16 0.42
10 Median -0.21 0.25 60 Median 0.27 0.55
10 Min.Pivot -0.35 0.08 60 Min.Pivot -0.07 0.16
10 Know.Weight -0.28 0.17 60 Know.Weight -0.11 0.29
10 Meta.Prob.Weight -0.22 0.25 60 Meta.Prob.Weight 0.10 0.38
20 Simp.Average -0.04 0.32 70 Simp.Average 0.18 0.44
20 Median 0.03 0.43 70 Median 0.28 0.55
20 Min.Pivot -0.18 0.13 70 Min.Pivot -0.06 0.18
20 Know.Weight -0.14 0.25 70 Know.Weight -0.12 0.29
20 Meta.Prob.Weight -0.06 0.36 70 Meta.Prob.Weight 0.11 0.40
30 Simp.Average 0.04 0.38 80 Simp.Average 0.18 0.44
30 Median 0.14 0.49 80 Median 0.29 0.57
30 Min.Pivot -0.15 0.17 80 Min.Pivot -0.06 0.17
30 Know.Weight -0.14 0.28 80 Know.Weight -0.10 0.31
30 Meta.Prob.Weight 0.00 0.39 80 Meta.Prob.Weight 0.11 0.40
40 Simp.Average 0.09 0.40 90 Simp.Average 0.21 0.45
40 Median 0.20 0.51 90 Median 0.32 0.57
40 Min.Pivot -0.11 0.16 90 Min.Pivot -0.04 0.18
40 Know.Weight -0.13 0.28 90 Know.Weight -0.11 0.29
40 Meta.Prob.Weight 0.03 0.40 90 Meta.Prob.Weight 0.12 0.41
50 Simp.Average 0.14 0.42 100 Simp.Average 0.22 0.44
50 Median 0.24 0.53 100 Median 0.32 0.56
50 Min.Pivot -0.08 0.17 100 Min.Pivot -0.04 0.16
50 Know.Weight -0.11 0.31 100 Know.Weight -0.10 0.28
50 Meta.Prob.Weight 0.08 0.40 100 Meta.Prob.Weight 0.14 0.40

Table D1: 95% Bootstrap confidence intervals depicted in Figure 6b (Coin Flips data)
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C.Size Comparison Low.B. Upp.B. C.Size Comparison Low.B. Upp.B.
10 Simp.Average 0.73 2.65 50 Simp.Average 2.70 3.55
10 Median 1.14 3.33 50 Median 2.78 3.86
10 Min.Pivot -0.76 0.88 50 Min.Pivot 0.51 1.22
10 Know.Weight -0.86 0.75 50 Know.Weight -0.25 0.46
10 Meta.Prob.Weight -0.76 1.29 50 Meta.Prob.Weight -0.23 0.71
20 Simp.Average 2.02 3.31 60 Simp.Average 2.85 3.68
20 Median 2.28 3.83 60 Median 2.92 3.91
20 Min.Pivot 0.11 1.19 60 Min.Pivot 0.60 1.30
20 Know.Weight -0.33 0.79 60 Know.Weight -0.20 0.48
20 Meta.Prob.Weight -0.28 1.15 60 Meta.Prob.Weight -0.15 0.67
30 Simp.Average 2.38 3.44 70 Simp.Average 2.87 3.59
30 Median 2.53 3.82 70 Median 2.92 3.81
30 Min.Pivot 0.30 1.18 70 Min.Pivot 0.61 1.24
30 Know.Weight -0.31 0.55 70 Know.Weight -0.23 0.42
30 Meta.Prob.Weight -0.37 0.84 70 Meta.Prob.Weight -0.23 0.61
40 Simp.Average 2.66 3.61 80 Simp.Average 2.94 3.68
40 Median 2.76 3.96 80 Median 2.97 3.88
40 Min.Pivot 0.51 1.28 80 Min.Pivot 0.67 1.31
40 Know.Weight -0.18 0.60 80 Know.Weight -0.16 0.44
40 Meta.Prob.Weight -0.21 0.83 80 Meta.Prob.Weight -0.15 0.67

Table D2: 95% Bootstrap confidence intervals depicted in Figure 7, General Knowledge data

C.Size Comparison Low.B. Upp.B. C.Size Comparison Low.B. Upp.B.
10 Simp.Average 2.87 10.58 50 Simp.Average 8.57 11.98
10 Median 5.05 14.40 50 Median 10.10 15.09
10 Min.Pivot -1.44 4.73 50 Min.Pivot 2.34 5.20
10 Know.Weight -2.10 4.91 50 Know.Weight -1.65 2.26
10 Meta.Prob.Weight -4.38 2.86 50 Meta.Prob.Weight -0.88 2.43
20 Simp.Average 6.25 11.46 60 Simp.Average 8.90 11.89
20 Median 8.14 14.95 60 Median 10.43 14.88
20 Min.Pivot 1.01 4.99 60 Min.Pivot 2.62 5.14
20 Know.Weight -1.47 3.92 60 Know.Weight -1.70 2.11
20 Meta.Prob.Weight -2.30 2.55 60 Meta.Prob.Weight -0.73 2.32
30 Simp.Average 7.42 11.51 70 Simp.Average 9.09 11.88
30 Median 9.09 14.79 70 Median 10.59 14.69
30 Min.Pivot 1.43 4.81 70 Min.Pivot 2.73 4.99
30 Know.Weight -1.79 2.89 70 Know.Weight -1.66 1.68
30 Meta.Prob.Weight -1.75 2.26 70 Meta.Prob.Weight -0.56 2.20
40 Simp.Average 8.38 11.93 80 Simp.Average 9.24 11.93
40 Median 9.83 15.25 80 Median 10.81 14.81
40 Min.Pivot 2.34 5.20 80 Min.Pivot 2.94 5.11
40 Know.Weight -1.48 3.02 80 Know.Weight -1.65 1.59
40 Meta.Prob.Weight -0.83 2.57 80 Meta.Prob.Weight -0.39 2.20

Table D3: 95% Bootstrap confidence intervals depicted in Figure 7, State Capital data
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Comparison Dispersion Low.B. Upp.B.
Simp.Average Low 0.59 1.19
Median Low -0.45 0.12
Min.Pivot Low -0.30 0.32
Know.Weight Low -0.69 0.13
Meta.Prob.Weight Low 1.29 2.79
Simp.Average Medium 2.41 3.37
Median Medium 2.32 3.74
Min.Pivot Medium 0.47 1.11
Know.Weight Medium -0.37 0.24
Meta.Prob.Weight Medium -0.75 0.68
Simp.Average High 10.93 14.01
Median High 9.85 16.31
Min.Pivot High 4.76 7.09
Know.Weight High 2.84 4.71
Meta.Prob.Weight High -0.26 2.26

Table D4: 95% Bootstrap confidence intervals depicted in Figure 8, General Knowledge data

Comparison Dispersion Low.B. Upp.B.
‘ Simp.Average Low 1.52 2.75
Median Low -1.05 0.05
Min.Pivot Low 0.87 1.54
Know.Weight Low -0.07 0.84
Meta.Prob.Weight Low 5.34 7.31
Simp.Average Medium 6.62 12.21
Median Medium 7.54 17.11
Min.Pivot Medium 0.97 4.31
Know.Weight Medium -4.88 -2.19
Meta.Prob.Weight Medium -6.29 -0.81
Simp.Average High 20.07 24.56
Median High 21.40 32.02
Min.Pivot High 7.56 11.71
Know.Weight High 0.52 3.27
Meta.Prob.Weight High 2.27 4.24

Table D5: 95% Bootstrap confidence intervals depicted in Figure 8, State Capital data
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E Analysis on the Coin Flips data - Nested structure710

(a) Average RMSE vs (bootstrap) crowd size

(b) Reduction in log absolute error (averaged across items) in Bootstrap samples

Figure E1: Bootstrap analysis on Coin Flips data

Figure E1 presents the results of a bootstrap analysis (described in Section 5.1) on the711

Nested structure data. As discussed in Section 4.1, the Nested structure differs from the712
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formal framework of the SO algorithm. Nevertheless, the SO algorithm does not perform713

significantly worse than any of the benchmarks considered.714

F SO algorithm with interpolated quantile function715

(a) Average RMSE (across iterations) vs crowd size

(b) Reduction in log absolute error (averaged across items) in Bootstrap samples

Figure F1: Results of bootstrap analysis on Coin Flips data
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Figure F2: Pairwise differences in Bootstrapped Transformed Brier scores.

43



G Robustness checks on Section 5.2716

Figure G1: Bootstrap differences in Transformed Brier Scores (measure of dispersion: kur-
tosis)
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Figure G2: Bootstrap differences in Transformed Brier Scores (equal split in categories of
dispersion)
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